
CondorCKD – Implementing an
Algebraic Knowledge Discovery System
in a Functional Programming Language

Jens Fisseler1, Gabriele Kern-Isberner2,
Andreas Koch1, Christian Müller1, Christoph Beierle1

1Department of Computer Science, Knowledge Based Systems,

FernUniversität in Hagen, 58084 Hagen, Germany
2Department of Computer Science, Information Engineering,

Universität Dortmund, 44221 Dortmund, Germany

Abstract

We introduce CondorCKD, an implementation of a novel data mining
algorithm using the lazy functional programming language Haskell. While
functional programming languages are often considered to be applicable
to “toy problems” only, we try to give prove that these languages can of
course be used to tackle demanding real-world programming tasks, and
that programmers can benefit from the advantages of functional languages
without having to pay too high a price with regard to running time and
memory consumption. We describe our experiences gained developing with
Haskell, including implementation of a graphical user interface and a novel
approach to compute the cycles of an undirected graph.

1 Introduction

Data mining algorithms put high demands on their implementation languages
when it comes to speed and the ability to handle large volumes of data. Because of
this, data mining software has mainly been written in imperative languages such
as C and C++, but also Java has become quite popular [22]. To the best of our
knowledge, there are very few examples of data mining algorithms implemented
in functional programming languages ([4] describes one such example), although
logical languages like Prolog are very popular in the subarea of Inductive Logic
Programming [15].

When evaluating several programming language for implementing a novel data
mining algorithm, we were looking for a language which would make it easy to
transfer the mathematical, high-level specification of the algorithm into program

1

code, and that would allow us to quickly implement a working prototype which
we could further refine easily. As functional programming languages have a rep-
utation to offer a higher productivity than imperative ones, we evaluated several
functional languages and finally chose Haskell, for several reasons. Its clean syn-
tax seemed well suited to express our mathematical specification, it offered a
comprehensive standard library and good development tool support. We also
hoped to turn our prototype into a usable product, without having to recode the
algorithm in another language because of severe performance penalties.

In the rest of this paper we will discuss if Haskell has lived up to our expec-
tations. We give a short overview of our algorithm in Section 2, before further
elaborating on our choice of Haskell in Section 3. Two important parts of our
implementation, a novel algorithm for enumerating the cycles of an undirected
graph, and a graphical user interface, are discussed in Sections 4 and 5. Our gen-
eral experience in using Haskell for implementing quite a demanding algorithm
are stated in Section 6, and in Section 7 we conclude.

2 Knowledge discovery by reversing inductive

knowledge representation

In a very general sense, the aim of knowledge discovery is to reveal structures
of knowledge which can be seen as structural relationships, being represented by
rules, often also called conditionals in this paper. There are two key ideas under-
lying the approach we used for our implementation: First, knowledge discovery is
understood as a process which is inverse to inductive knowledge representation.
So the relevance of discovered information is judged with respect to the cho-
sen representation method. Second, the link between structural and numerical
knowledge is established by an algebraic theory of conditionals, which considers
conditionals as agents acting on possible worlds. By applying this theory, we
develop an algorithm that computes sets of probabilistic rules from distributions.
The inductive representation method used here is based on information theory,
so that the discovered rules can be considered as being most informative in a
strict, formal sense. This approach is described in detail in [10]; we will give a
brief overview in this section, also presenting a small running example that will
help illustrating both the method and the implementation. The results shown
are found with the help of Condor, but the example is simple enough to be
calculated “by hand”. Nevertheless, it may well serve to show how the algorithm
works, in particular, how missing information is dealt with.

Example 1 Suppose in our universe are animals (A), fish (B), aquatic beings
(C), objects with gills (D) and objects with scales (E). The following table may

2

reflect our observations:

object freq. prob. object freq. prob.

abcde 59 0.5463 abcde 11 0.1019

abcde 21 0.1944 abcde 9 0.0833

abcde 6 0.0556 abcde 2 0.0185

We are interested in any relationship between these objects, e.g., to what extent
can we expect an animal that is an aquatic being with gills to be a fish? This
relationship is expressed by the conditional (b|acd), which is read as “b, under the
condition a and c and d”. If P is the probability distribution given by the table
above and x ∈ [0, 1] is a probability value, P satisfies the probabilistic conditional
(b|acd)[x], written as P |= (b|acd)[x] iff for the conditional probability, it holds
that P (b|acd) = x. In our example, it is easily calculated that P |= (b|acd)[0.8].

Basically, probabilistic rules are considered not merely as statistical relation-
ships but as chunks of knowledge, i.e. as plausible cognitive links the strength of
which is expressed by a probability value and which can be used for inductive
reasoning. Using probabilistic rules to build up knowledge bases, and applying an
appropriate inductive reasoning mechanism to such bases, we may obtain a full
probabilistic description of our world, i.e. a probability distribution. This pro-
cess of completing partial knowledge is called inductive knowledge representation
here. The task a knowledge discovery procedure has to accomplish can be seen as
being inverse to this process: It takes a frequency distribution as description of
the world and aims at extracting relevant information that somehow represents
the world knowledge, see Figure 1.

rule
base

distri-
bution

inductive reasoning

knowledge discovery

Figure 1: Knowledge discovery as inverse to inductive reasoning.

Our method exploits this interrelationship by using the principle of maxi-
mum entropy (ME-principle) as a vehicle to represent incomplete probabilistic
knowledge inductively, taking the discovered rules as a basis for ME-generating
the distribution under investigation. The entropy H(P) of a probability distri-
bution P is defined as H(P) = −

∑
ω P (ω) log P (ω) and measures the amount

of indeterminateness inherent to P . Let R∗ be a knowledge base consisting of
a set of probabilistic rules. Applying the principle of maximum entropy then

3

means to select the unique distribution P ∗ = ME(R∗) that maximizes H(P)
subject to the condition that P satisfies R∗, i.e. P |= R∗. In this way, the ME-
method ensures that no further information is added, so that the knowledge R∗

is represented most faithfully. ME(R∗) is called the ME-representation of R∗.
The ME-principle provides a most convenient and theoretically sound method to
represent incomplete probabilistic knowledge (cf. [7, 18, 8]).

Our method is a bottom-up approach, starting with conditionals with long
premises, and shortening these premises to make the conditionals most expres-
sive but without losing information, in accordance with the information inherent
to the data. The method is based on statistical information but not on proba-
bilities close to 1; actually, it mostly uses only structural information obtained
from the data and it is able to disentangle highly complex interactions between
conditionals. We are going to discover not single, isolated rules but a set of rules,
thus taking into regard the collective effects of several conditionals. Moreover,
zero probabilities computed from data are interpreted as missing information, not
as certain knowledge. To achieve these aims, we make use of an algebraic, group
theoretical approach to conditional relationships that takes kernels of homomor-
phisms as structural invariants of probability distributions (for further details,
cf. [9, 2]). The procedure to discover appropriate ME-generator rules from a
distribution P can be sketched as follows:

• Start with a set B of simple association rules the length of which is con-
sidered to be large enough to capture all relevant dependencies. Ide-
ally, B would consist of rules whose antecedents have maximal length (i.e.
#(variables)− 1).

• Search for numerical relationships in P by investigating which products of
probabilities match, in order to calculate the kernel ker P .

• Compute the corresponding conditional structures with respect to B, yield-
ing equations of elements in the associated group FB.

• Solve these equations by forming appropriate factor groups of FB.

• Building these factor groups corresponds to eliminating and joining the ba-
sic conditionals in B to make their information more concise, in accordance
with the numerical structure of P . Actually, the antecedents of the condi-
tionals in B are shortened so as to comply with the numerical relationships
in P .

An overview of the algorithm in pseudocode is given in Figure 2, its data flow is
illustrated in Figure 3; it has been implemented as a component of the Condor
system (for an overview, cf. [3])

Ideally, the set B of basic rules that the algorithm starts with would consist
of rules whose antecedents have maximal length (i.e. #(variables) − 1). This,
however, would not be tractable and hence may not really serve as a starting
point in our algorithm. There is another problem which one usually encounters

4

Algorithm CKD
(Conditional Knowledge Discovery)

Input A frequency/probability distribution P ,
obtained from statistical data,
only listing entries with positive probabilities,
together with information on
variables and appertaining values

Output A set of probabilistic conditionals

Begin
% Initialization
Compute the basic tree of conjunctions
Compute the list NC of null-conjunctions
Compute the set S0 of basic rules
Compute ker P
Compute ker g
Set K := ker g
Set S := S0

% Main loop
While equations are in K Do

Choose gp ∈ K
Modify (and compactify) S
Modify (and reduce) K

Calculate the probabilities of the conditionals in S
Return S and appertaining probabilities

End.

Figure 2: The CKD algorithm [10].

5

data

cycles

basic
rules

ker P

rule
aggregator

rules

Figure 3: Dataflow of the CondorCKD algorithm.

in data mining problems: The frequency distributions calculated from data are
mostly not positive – just to the contrary, they would be sparse, full of zeros,
with only scattered clusters of non-zero probabilities. This overload of zeros is
also a problem with respect to knowledge representation, since a zero in such a
frequency distribution often merely means that such a combination has not been
recorded. The strict probabilistic interpretation of zero probabilities, however, is
that such a combination does not exist which seems not to be adequate.

Both of these problems – the exponential complexity of the ideal conditional
starter set and the sparse and mostly incomplete knowledge provided by statisti-
cal data – can be solved in our framework in the following way: The zero values
in frequency distributions are taken to be unknown, but equal probabilities, that
is, they are treated as non-knowledge without structure. More exactly, let P be
the frequency distribution computed from the set of data under consideration.
Then, for each two worlds ω1, ω2 not occurring in the database and thus being
assigned a zero probability, we have P (ω1) = P (ω2) and hence ω1

ω2
∈ ker P . In this

way, all these so-called null-worlds contribute to ker P , and their structure may
be theoretically exploited to shrink the starting set of conditionals in advance.

In order to represent missing information in a most concise way, null-
conjunctions (i.e. elementary conjunctions with frequency 0) have to be calculated
as disjunctions of null-worlds. To this end, the basic tree of conjunctions is built
up. Its nodes are labelled by the names of variables, and the outgoing edges are
labelled by the corresponding values, or literals, respectively. The labels of paths
going from the root to nodes define elementary conjunctions. So, the leaves of
the tree either correspond to complete conjunctions occurring in the database,
or to null-conjunctions. These null-conjunctions are collected and aggregated to

6

define a set NC of most concise conjunctions of probability 0.
Now we are able to set up a set S0 of basic rules also with the aid of tree-like

structures. First, it is important to observe that conditionals may be separately
dealt with according to the literal occurring in their consequents. So S0 consists
of sets S0.v of conditionals with consequent v, for each value v of each variable
V ∈ V . Basically, the full trees contain all basic single-elementary conditionals
from B, but the trees are pruned with the help of the set NC of null-conjunctions.

Next, the numerical relationships in P have to be explored to set up ker P .
We only use complete conjunctions with non-zero probabilities for this purpose.
So again, we avoid to use missing information. Usually, numerical relationships
between probabilities stemming from ME-learning association rules can be found
between neighboring complete conjunctions (i.e. complete conjunctions that dif-
fer in exactly one literal). We construct a neighbor graph from P , the vertices of
which are the non-null-worlds, labeled by their frequencies or probabilities, and
with edges connecting any two neighbors. Then any such relationship corre-
sponds to a simple cycle of even length (i.e. involving an even number of vertices)
in the neighbor graph, such that the cross-product built from the frequencies
associated with the vertices, with alternating exponents +1 and −1 according to
the order of vertices in the cycle, amounts to (a number close to) 1. Therefore,
the search for numerical relationships holding in P amounts to searching for such
cycles in the neighbor graph. Finally, as the last step of the initialization, the
kernel of a structure homomorphism, ker g, has to be computed from ker P with
respect to the set S0 of conditionals.

In the main loop of the algorithm CKD, the sets K of group elements and
S of conditionals are subject to change. In the beginning, K = ker g and S =
S0; in the end, S will contain the discovered conditional relationships. Note
that no probabilities are used in this main loop – only structural information
(derived from numerical information) is processed. It is only afterwards, that the
probabilities of the conditionals in the final set S are computed from P , and the
probabilistic conditionals are returned.

Example 2 We continue Example 1. First, the set NC of null-conjunctions
has to be calculated from the data; here, we find NC = {a, c, b d} – no object
matching any one of these partial descriptions occurs in the data base. These
null-conjunctions are crucial to set up a starting set B of basic rules of feasible
size:

B = { φb,1 = (b|acde) φd,1 = (d|abce)
φb,2 = (b|acde) φd,2 = (d|abce)

φb,3 = (b|d) φd,3 = (d|b)
φe,1 = (e|abcd) φa,1 = (a|>)

φe,2 = (e|abcd)

φe,3 = (e|abcd) φc,1 = (c|>) }
So, the missing information reflected by the set NC null-conjunctions helped to
shrink the starting set B of rules from 5 · 24 = 80 basic single-elementary rules to

7

only 11 conditionals. The next step is to analyze numerical relationships. In this
example, we find two numerical relationships between neighboring worlds that
are nearly equal:

P (abcde) ≈ P (abcde) and P (
abcde

abcde
) ≈ P (

abcde

abcde
)

These relationships are translated into the algebraic group equations and help
modifying the set of rules. For instance, φb,1 and φb,2 are joined to yield (b|acd),
and φe,3 is eliminated. As a final output, the CKD algorithm returns the following
set of conditionals:

Conclusion Premise Prob.

A=YES 1.0

B=YES D={NO} 1.0
B=YES A={YES}, C={YES}, D={YES} 0.8

C=YES 1.0

D=YES B={NO} 1.0
D=YES A={YES}, B={YES}, C={YES} 0.91

E=YES A={YES}, B={YES}, C={YES} 0.74

Note that our system actually has generated the LATEX-code for the table given
above as output. The only modification necessary was to adapt the table width
to the column width. The following table shows the same set of conditionals
using the mathematical notation used hitherto:

cond. prob. cond. prob.

(a|>) 1 (c|>) 1

(b|d) 1 (d|b) 1

(b|acd) 0.8 (d|abc) 0.91

(e|abc) 0.74

All objects in our universe are aquatic animals which are fish or have gills.
Aquatic animals with gills are mostly fish (with a probability of 0.8), aquatic fish
usually have gills (with a probability of 0.91) and scales (with a probability of
0.74).

8

3 Using Haskell for data mining

When beginning with the implementation of the CondorCKD algorithm, we
had to choose a suitable programming language. As we had an abstract, high-
level description of the algorithms and their corresponding data structures, we
were looking for a programming language that would make it easy to transfer
these algorithms from their mathematical description to an executable form. We
also wanted to be able to quickly implement a prototype so to review the results of
the algorithms and further refine them. In order to do this, it should be possible
for people with less a background in programming to look at the code and get
a rough idea of what it would do. This led us to favor functional programming
languages over imperative ones.

In his famous paper [6], Hughes points out that functional programming lan-
guages offer two potential advantages over conventional ones: higher-order func-
tions and lazy evaluation. Higher-order functions help in modularizing programs
by allowing the programmer to separate recurring patterns of computation into
a general – thereby reusable – higher-order function and a small specialized func-
tion, thus increasing programmer efficiency. Lazy evaluation is regarded even
more important to modular programming, as it allows the programmer to com-
bine smaller functions to increasingly larger ones, but computing only what is
really needed, thus enabling the program to process potentially infinite data
structures.

While higher-order functions and lazy evaluation are two advantages shared
by other functional programming languages, our final decision for Haskell was
based on several other important factors:

• Clean and concise syntax

• Strong typing and good support for user defined data-types

• A comprehensive standard library

• Availability of good compilers and additional development tools

Figure 4 very briefly illustrates the Condor system that is completely im-
plemented in Haskell. It takes data in the form of CSV or ARFF files (these
are formats for exchanging tabular data widely used in data mining systems, see
e.g. [22]) as input. The parser of the CondorCKD component reads these
input files and makes the data available to functions generating the internal rep-
resentations of probability distributions, including meta data about the involved
variables. Using a logic representation component, probabilistic rules are ex-
tracted from the probability distribution and are presented both in a simple text
format (ready for further processing) as well as in a polished LATEX version. The
complete user interaction is supported by a graphical user interface which is also
fully implemented in Haskell.

9

P
a
r
s
e
r Logic

MetaData

Dist Rule

ex-

trac-

tion

CondorCKD

CondorGUI

Data

ARFF

CSV

Rules

Text

TEX

Figure 4: Overview of the Condor system.

In the following, we will present two components of the Condor system in
more detail. The first one deals with finding particular cycles in labelled undi-
rected graphs which play a central role at the heart of our CKD algorithm. The
other component is the graphical user interface for which we used the wxHaskell
library. After presenting our functional programming approach towards these two
components, we will give a general overview of our experiences in using Haskell
for implementing quite a complex data mining algorithm.

4 Enumerating all cycles of an undirected graph

– a functional programming challenge

As described in Section 2, one of the most important parts of the CondorCKD
algorithm is the computation of the simple cycles of the neighbor-graph. These
depict numerical relationships in the input data, which are used for aggregating
the basic rules.

4.1 Cycles in an undirected graph

Recall that, for an undirected graph G = (V, E) with edges E ⊆ {{u, v} |u, v ∈
V, u 6= v}, a simple cycle (of length k) is a sequence 〈v0, v1, . . . , vk, v0〉 of pairwise
distinct vertices vi ∈ V . We are interested in computing all simple cycles with
even length up to a certain maximum length kmax ∈ {2, 4, 6, . . .}. This cycle
length restriction is necessary, as the number of simple cycles can be exponential
in the number of vertices.

The enumeration of all simple cycles can be done separately for every bicon-
nected component of an undirected graph, as two biconnected components are

10

connected only by a single vertex, a so called cut vertex. Because of this, every
path between two vertices contained in different biconnected components must
include at least one cut vertex, and a cycle between these two vertices would
contain these cut vertices twice, hence cannot be a simple cycle.

There are several approaches to compute the simple cycles of an undirected
graph [14], of which the vector space approach and search-based algorithms are
the most important ones.

Vector space algorithms are based on the fact that all cycles of an undirected
graph can be expressed as a composition of fundamental cycles. Every spanning
tree (V, T) of an undirected graph G = (V, E) induces a set of fundamental
cycles, as every back edge e ∈ E \ T creates exactly one fundamental cycle when
added to T . Since every spanning tree of G contains |V | − 1 edges, there are
|E| − |V | + 1 fundamental cycles {S1, S2, . . . , S|E|−|V |+1}. Such a fundamental
cycle set is a basis of a vector space, and every cycle of G can be written as
(· · · (Si1∆Si2)∆ · · ·)∆Sin for some Si1 , . . . , Sin ∈ {S1, S2, . . . , S|E|−|V |+1}, where
∆ depicts the symmetric difference operation between sets of edges. Whereas
every cycle of an undirected graph can be represented this way, generally only a
small fraction of the 2|E|−|V |+1−|E|−|V | possible combinations are cycles, the rest
being disjoint unions of cycles. Although several vector space algorithms have
been developed [14], very little has been done regarding pruning these unnecessary
computations, let alone incorporating cycle length restrictions.

Search-based algorithms use a depth-first search during which edges are added
to a path until a cycle is produced. Careful pruning of the search space is nec-
essary to ensure that every cycle is generated exactly once and that very little
unnecessary work is done. To this end, we compute a spanning tree (V, T) using
a graph-exploration search (DFS or BFS), during which a unique number d(v) is
assigned to every vertex v ∈ V upon the first visit of this v. Simultaneously, a
set of possible cycle starting vertices is calculated. Because every back edge (the
edges creating a fundamental cycle, see above) is an edge of at least one simple
cycle, and as every cycle must end in a back edge, the vertices with entering
back edges are possible cycle starting vertices. To compute all cycles, a (limited)
depth-first search is started in every cycle starting vertex s, and we build a path
〈v0 = s, v1, v2, . . . , vk〉 with d(vi) > d(s), 1 6 i 6 k. As the vertices are totally
ordered by d(·), we can assume that every cycle is rooted at its lowest numbered
vertex, and we only have to consider path-extending vertices vk+1 /∈ {s, v1, . . . , vk}
with d(vk+1) > d(s). This way, every cycle is only found twice, and by imposing
a direction on the back edges, it can be ensured that every cycles is found only
once.

4.2 A combined approach

Although several depth-first search algorithms for computing all the cycles of
a graph are described in the literature [20, 19], their imperative description –
which uses destructive updates for marking vertices not available for extending
the current path – makes their implementation in a lazy functional language quite

11

a challenge. Though we did not use the monadic-state based approach described
in [11], we have paid attention to use data structures supporting fast insertion,
lookup and deletion (like IntMaps) for storing the available vertices. Making
functions as strict as possible was also important in obtaining a fast algorithm.
But more important than this was a new idea of further reducing the search space
of the depth-first search by using results based on the vector space approach.

The key to our new algorithm is the fact that every fundamental cycle has
one special edge that is not a member of any other fundamental cycle – the back
edge closing a path in the corresponding spanning tree, thus yielding this fun-
damental cycle. Assume a fixed ordering of the elements of a given fundamental
cycle set {S1, S2, . . . , S|E|−|V |+1}. Recall that every cycle c can be written as
c = (· · · (Si1∆Si2)∆ · · ·)∆Sin , w.l.o.g. i1 < i2 < · · · < in. At least one edge must
have been removed from every Si, otherwise one or more of the Si would be part
of c as a whole, which means c would be a disjoint union of cycles. Thus, in order
to compute all cycles containing the back edge of Si, 1 6 i 6 |E| − |V | + 1, we
can restrict the graph to be searched to the subgraph induced by S1 ∪ · · · ∪ Si.

Our cycle enumeration can be described by three steps:

1. Compute a set of fundamental cycles {S1, S2, . . . , S|E|−|V |+1}.

2. For every Si, compute a subgraph Gi. Gi is the union of a subset of the
fundamental cycles S1, . . . , Si, and is defined by the cycles of the equivalence
class of Si with respect to the transitive closure of the relation Ri

∩,

Ri
∩ := {(Sr, St) |Sr, St ∈ {S1, . . . , Si} ∧ Sr ∩ St 6= ∅}.

3. Conduct a DFS-based cycle enumeration in each of these subgraphs Gi,
starting at one of the vertices incident to the back edge of Si.

Functional pseudo-code for an algorithm computing a set of fundamental cy-
cles is given in Figure 5. We use a breadth-first search, as the resulting funda-
mental cycles tend to be short, i.e. will have common edges with only a few other
fundamental cycles. Because of this, the subgraphs described in step 2 above tend
to be small (this is just a heuristic found useful in practice).

After computing a set of fundamental cycles, we generate the subgraphs that
are subsequently searched for simple cycles. As the subgraphs pertaining to
higher numbered fundamental cycles are supergraphs of previously computed
subgraphs, we can save some computations by storing the already generated
subgraphs in an appropriate data structure. This set contains edge-disjoint unions
of fundamental cycles and is initially empty. If we want to compute all cycles
containing the back edge of fundamental cycle Si, 1 6 i 6 |E| − |V |+ 1, we look
at all the subgraphs already processed and check whether they have at least one
edge in common with the fundamental cycle Si. All these subgraphs are removed
from this set and are conjoined, together with Si, yielding a new subgraph Gi.
This new subgraph contains all cycles possibly including the back edges of the

12

generateFundamentalCycles :: Graph
→ Set .Set Vertex
→ [FundamentalCycle]

generateFundamentalCycles graph availableVerts
| Set .null availableVerts

= []
| otherwise

= fcsInComp ++ (generateFundamentalCycles
graph availableVerts ′′)

where
(v , availVerts ′) = Set .deleteFindMin availVerts
parents = Map.empty
depth = Map.singleton v 0
queue = Queue.listToQueue (map (λ u → (u, v))

(Graph.edges graph v))
(fcsInComp, availVerts ′′) = BFS graph availVerts ′

queue parents depth

Figure 5: Fundamental cycle generation.

fundamental cycles contained in Gi and is subsequently processed with a depth-
limited DFS-based cycle enumeration algorithm, but the search is started only
once in the vertex with the incoming back edge of Si. Afterwards, the newly
computed cycles are added to the set of all fundamental cycles, the subgraph
Gi is added to the set of the already processed subgraphs and we continue with
fundamental cycle Si+1.

Preliminary results comparing the running time of our algorithm (FCs + DFS)
and the running time of a simple search-based algorithm (DFS) are promising
(see Figure 6).

We have compared both algorithms on three graphs, using different maximum
cycle lengths. The Haskell code was compiled using GHC 6.4.1 with optimization
turned on and code generation via C. The executables were running on an AMD
Athlon64-3200+ in 32bit-mode with 1GB of RAM, using Linux.

Although the results are encouraging, there is room for further improvement.
Our DFS-based search algorithm does not use the approach described in [11],
i.e. does not have the same asymptotical run-time behaviour as its imperative
counterparts. Using a monadic-state based approach in conjunction with unboxed
arrays might further improve the running time. Other constraints imposed on
the cycles might be exploited to further reduce the algorithm’s run-time, but this
is specific to our problem at hand.

13

graph max. length #cycles FCs + DFS DFS

A 10 2827 0:00:01 0:00:02
12 16699 0:00:05 0:00:13
14 119734 0:00:45 0:08:13
16 890204 0:05:48 7:23:54

B 10 2929 0:00:04 0:00:06
12 23021 0:00:42 0:01:28
14 222459 0:09:11 0:42:09

C 6 2927 0:00:10 0:01:26
8 18695 0:00:36 0:02:13

10 268097 0:13:51 0:30:27

Figure 6: Runtime comparison.

5 Power to the user – a GUI for knowledge dis-

covery

From the start, Condor has been developed with the end user in mind. Though
these end users will probably be researchers or other people doing knowledge
discovery – i.e. users who probably have above average computer literacy skills
– we wanted to offer them a comfortable user interface to make working with
Condor as convenient as possible. To this end, we have developed a graphical
user interface, using the wxHaskell library [12]. In this section we will give a
short overview of the GUI; a description of our experience in using wxHaskell is
given in Section 6.4.

All user actions are available through the menu, see Figure 7. As the main
action when working with Condor will be to compute the rules modelling a
previously loaded distribution, we put the corresponding menu item at the top
of the “Investigate distribution” menu. Selecting “Calculate rules. . . ” will open
a new dialog, see Figure 8. In this dialog, the user can adjust several parameters
concerning the CondorCKD algorithm, and must specify the output file into
which the computed rules will be written. There are several other parameters
available as well, but as these will only be of concern to more advanced users
or developers, we have put these into another notebook tab labelled “expert op-
tions”. This way, occasional users won’t be distracted by unnecessary detail. One
of these advanced options is the choice of the output format of the rules. These
are written to plain text files by default, which is fine most of the time, as it allows
for quick inspection. But on certain occasions, a more elaborate presentation is
necessary. Because of this, Condor offers the option of exporting the rules using
LATEX-code. Figure 9 shows an excerpt from a report on rules calculated from
the “Postoperative Patient” dataset available from the UCI Machine Learning
Repository [16]. The screenshots given in Figure 7, 8 and 10 were taken during
a data mining session analyzing this dataset.

14

Figure 7: The “Investigate distribution” menu.

Figure 8: The “Calculate rules” dialog.

15

Condor Report

Meta data

Variable Literals

LCORE {HIGH,LOW,MID}
LSURF {HIGH,LOW,MID}
LO2 {EXCELLENT,GOOD}
. . .

Rules

Conclusion Premise Prob.

LCORE=HIGH LSURF={HIGH}, LO2={EXCELLENT}, LBP={HIGH} 0.75
LCORE=HIGH LSURF={HIGH}, LO2={EXCELLENT}, LBP={MID} 0.5
LCORE=HIGH LSURF={HIGH}, LO2={GOOD}, LBP={HIGH} 0.5
LCORE=HIGH LSURF={HIGH}, LO2={GOOD}, LBP={LOW} 0.0
. . .

Figure 9: Excerpt from a report file.

Figure 10: GUI components for investigating a distribution.

16

Another important part of working with Condor is querying the probabil-
ity distribution. This incorporates the calculation of (conditional) probabilities,
which can be used to verify prior assumptions about the relationships present in
the probability distribution, but can also be utilized to validate rules. Sometimes
it may also be helpful to look at the internal data structure used to represent the
probability distribution. Both tasks are supported by the GUI, see Figure 10.

There is even more information available through the GUI, but most of it is
only important to advanced users and developers, as its comprehension requires
a good understanding of the CondorCKD algorithm. Therefore, we have only
briefly introduced the main parts of the GUI.

Though there may be many opportunities for improving our user interface,
it has nevertheless been an enormous advantage being able to provide a GUI.
Today’s computer users are in general more familiar with – and more comfortable
using – a graphical user interface than a text-based or even a command line
interface. A graphical interface also offers better ways of user interaction and
facilities for displaying information. Because of this, a GUI better supports the
user during the interactive and iterative knowledge discovery process.

6 Lessons learned

After introducing the CondorCKD algorithm and reviewing some important
parts of our implementation, we now want to give an overview of our general
experience in using a functional programming language for implementation of a
knowledge discovery algorithm. One thing to note is that some of the program-
mers involved in the implementation of the Condor system only had very little
previous experience with Haskell, consisting mostly of an introductory university
course in functional programming.

6.1 Clean and concise syntax

As stated in Section 3, the description of the CondorCKD algorithm was given
in pseudocode with a strong mathematical flavor. This was very convenient dur-
ing the implementation, as the specification was already decomposed into many
intertwined functions and utilized set-based syntax for describing collections of
data with certain properties and constraints. These mathematical concepts were
easily and rapidly coded in Haskell, whereas Haskell’s concise syntax allowed us
to stay very close to the original specification.

The often mentioned brevity of functional programs applies to CondorCKD,
too. Our functions generally consist of only a few lines, few have more than a
dozen. In our view, this brevity results from the use of higher-order functions
(like map, filter and fold) in combination with Haskell’s automatic memory man-
agement. When manipulating data in imperative or object-oriented languages, a
good part of the code deals with traversing the data and managing the memory
needed for its storage, whereas in functional languages the programmer can focus

17

on the data manipulation itself. The memory management is done implicitly, and
the traversal is done by a higher-order function, accepting the data manipulating
code (in terms of an anonymous function) as an argument.

Shorter, more concise functions are not only easier to comprehend, they are
also tested more easily, and can then be combined to build more complex func-
tions. Figure 11 shows one of our more complex functions, in fact it shows the
core function of the CondorCKD algorithm, the modification of ker g, i.e. the
elimination and aggregation of conditionals based on certain numerical properties
found in the data. Although the function depicted in Figure 11 is quite lengthy,
it’s inner workings are easily understood nonetheless, thanks to the “composi-
tional glue” offered by functional programming languages and because of the use
of guards and pattern matching. Both allow to structure conditional expressions
more concise than with nested if-then-statements, and thus make it easier to
verify whether all different conditions have been considered. Pattern matching is
even more important than are guards, because the compiler aids the programmer
in ensuring to meet every boundary condition, what cannot be done for guards,
but see Section 6.2 for a more elaborate discussion.

6.2 Strong typing

Haskell’s type system is often emphasized as one of the language’s most important
features in helping the user writing correct programs, and we can only support
this claim.

When writing a new module function, we have made a habit of writing its
type signature first, then implementing its body. This way, the compiler or
interpreter would complain about type mismatches, which easily occur when
writing new functions not used by or not using other module functions. Writing
a type signature is hence an additional tool in forcing the programmer to think
about the function once again instead of quickly hacking it down. Additionally,
type signatures act as some sort of documentation, supporting the programmer
when no other documentation has yet been written or is outdated.

It could be argued that other languages like C++ or Java also feature an
expressive type system, but Haskell’s type system, in cooperation with several
other aspects, offers additional benefits. Whereas a C++ or Java compiler will
only issue a warning or an error when the arguments given to a function or its
return value don’t match its declaration, a Haskell compiler can infer the type of a
function based on its arguments. By comparing this type to the type signature of
the function, it is often quite easy to find the bug resulting in the type mismatch.

Algebraic data types are another important part of Haskell’s type system. In
conjunction with pattern matching, algebraic types allow the processing of data
based on its structural properties. Because pattern matching is the only way to
extract data from algebraic types, incomplete patterns will cause the compiler to
issue a warning, thus forcing the programmer to rethink the boundary conditions
of his data types. Of course, this warning will be given only when using the
appropriate compiler flag, but activating all possible warnings and striving for a

18

modifyKergElem :: Set Conditional
→ (ConditionalProduct ,

[ConditionalProduct])
→ Maybe (Set Conditional ,

[ConditionalProduct])
modifyKergElem conds (eqCondProd , restCondProds)
| isEquationTypeA lhs rhs

= Just (filterConditionalProduct rhs
conds restCondProds)

| isEquationTypeB lhs rhs
= Just (conjoinConditionalProduct (fst $ head lhs) rhs

conds restCondProds)
| isEquationTypeA rhs lhs

= Just (filterConditionalProduct lhs
conds restCondProds)

| isEquationTypeB rhs lhs
= Just (conjoinConditionalProduct (fst $ head rhs) lhs

conds restCondProds)
| otherwise

= Nothing

where
(lhs , rhs) = splitConditionalProduct eqCondProd
isEquationTypeA :: ConditionalProduct

→ConditionalProduct
→Bool

isEquationTypeA []
= True

isEquationTypeA (:)
= False

isEquationTypeB :: ConditionalProduct
→ConditionalProduct
→Bool

isEquationTypeB []
= False

isEquationTypeB (: []) eqRhs
= all ((== 1) . snd) eqRhs

isEquationTypeB (:)
= False

Figure 11: The “heart” of the CondorCKD algorithm.

19

incrComplConj :: DTree
→ MetaData.Variable
→ [MetaData.Literal]
→ DTree

incrComplConj NullNode [] = . . .
incrComplConj NullNode varIdx (lit : lits) = . . .
incrComplConj leaf @(Leaf {}) [] = . . .
incrComplConj Leaf {} (:) = error . . .
incrComplConj Node {} [] = error . . .
incrComplConj node@(Node {}) varIdx (lit : lits) = . . .

Figure 12: Function for incrementing the frequency of an elementary conjunction.

clean compile is a good habit anyway. Otherwise warnings pertaining to possibly
serious errors will drown in unimportant messages.

Figure 12 shows an example of pattern matching applied to the algebraic
data type DTree. The pattern matching is actually done on the first and third
parameter and covers all boundary conditions, whereas two boundary conditions
(4th and 5th line of the function definition) should not occur if everything works
correctly, thus these result in an error .

Taking into account every possible boundary condition is quite difficult in lan-
guages like C++ or Java, as these don’t support algebraic types, which thus have
to be modelled using inheritance or certain member fields of a structured data
type. It is then up to the programmer to take care of the boundary conditions,
with the possibility – and high probability – of corresponding errors.

6.3 A comprehensive standard library

As Okasaki stated in [17], “functional programmers [. . .] too often reach for
lists when an ADT would be more appropriate”. Although list processing is
omnipresent in functional programming, C++’s Standard Template Library and
the Java Collections Framework demonstrate that a well designed library of con-
tainer classes and accompanying functions increase programmer productivity by
allowing him to focus on the real important task.

We extensively used the Haskell Hierarchical Libraries while implementing
the CondorCKD algorithm, especially the collection types Map and Set . They
allow for similar processing as lists, as they also offer the probably most often used
(list) manipulation functions map, filter and fold . This made it easy to change
functions processing lists to utilize a more appropriate collection type. The use of
higher-order functions was a great benefit over the iterator-based interface used
in imperative languages. Because of this, we could focus on how to work with
the data instead of having to worry about how to employ iterators to shuffle the
data around or even memory-management issues.

20

Parsec [13], a parser combinator library, is another example where Haskell’s
clean and concise syntax, in collaboration with a well designed programming
interface, support the programmer in getting his work done quickly and elegantly.
Figure 13 shows a small EBNF grammar (the rules for variable-identifier and
literal have been left out as these are little more than alphanumeric strings),
and Figure 14 depicts the Haskell code for the query rule. Though the real
code is slightly more complicated, using qualified names and additional Parsec
functions for improved error messages, this clearly shows that using appropriate
abstractions, parsers can be implemented easily and concisely. The code clearly
resembles the EBNF structure for the corresponding rule, a definite advantage
over tools requiering the usage of another language to specify the parser grammar.

query = ”(” variable-literal-list
[”|” variable-literal-list] ”)”;

variable-literal-list = variable-literals { ”,” variable-literals }*;
variable-literals = variable-identifier ”={” literal-list ”}”;
literal-list = [literal { ”,” literal }*];

Figure 13: A small EBNF grammar.

query :: Parser ([(String , [String])], [(String , [String])])
query = do

char ’(’
spaces
concl ← variableLiteralsList
try (do

char ’)’
return (concl , []))

< | > (do
char ’|’
spaces
prem ← variableLiteralsList
char ’)’
return (concl , prem))

Figure 14: Haskell code implementing a EBNF rule.

21

6.4 Implementing a graphical user interface

Having a suitable GUI-library available is another important aspect of whether
a language will be used by software developers, because nowadays most end-user
software has to offer a graphical user interface, otherwise most users simply won’t
accept it.

As described in Section 5, we have built a GUI using the wxHaskell library
[12] in order to make the usage of Condor more comfortable. We have chosen
wxHaskell over other GUI libraries (like gtk2hs), because wxHaskell seemed to
be one of the most matured mid-level graphical user interface libraries available,
and as it is a Haskell wrapper for the platform-independent wxWidgets library,
we expected the resulting code to be portable as well.

Our experiences show that wxHaskell in general provides all the functionality
needed to realize the GUI of the Condor system, but might need some further
polishing at some of its parts. A specific observation we have made concerns
the compatibility with respect to different platforms like Windows and Linux.
Whereas in general, this compatibility was achieved by using the cross-platform
library wxHaskell, some differences surfaced, e.g. when using a combo-box (a
widget that allows the selection of one of a set of predefined items, but can also
support free-form text entry). The reason for the slightly varying behaviour on
different platforms might be found in the behaviour of the wxWidgets underlying
the wxHaskell library, or even some of the platform-specific libraries wrapped by
wxWidgets itself.

6.5 A suitable development environment

To support the development of medium- to large-scale software, complementary
tools are necessary in addition to a suitable compiler or interpreter and a standard
library: debuggers and profilers, documentation tools, and editing support or
even integrated development environments. Fortunately, all these kind of tools
are available for Haskell, although not all have been used to the same extent
during the implementation of the CondorCKD algorithm.

The most important part of a development environment is of course the lan-
guage implementation itself, and there are quite a few available for Haskell. Ini-
tial development was done with Hugs, because its interactive interpreter made
the incremental development very convenient. But as the project’s code size
grew and the algorithms needed to be tested on real-world data, better run-time
performance was required and we switched to GHC, which has an interactive
environment, too, but also the ability to generate executables.

Debugging was mainly done by interactive testing of functions and excessive
printing of intermediate data whenever possible. This can only be considered
unwise in retrospect, but the existence of Hood [5] just escaped us. We’re planning
to use Hood during further development of CondorCKD.

Profilers are another invaluable development tool, because only their usage
permits the exact location of performance bottlenecks, even more so with lazy

22

evaluation [21]. Fortunately, GHC includes support for space and time profiling,
and this has helped increasing our algorithms’ performance on several occasions,
although how to improve performance was not always obvious, see Section 6.6.

Source code editing was mainly done with Emacs and its Haskell mode, which
offered enough support for our needs. But as with debugging, other IDEs were
not tried and might offer additional benefits.

6.6 Battling with laziness and fighting excessive memory
consumption

One language feature that nearly every Haskell programmer has to deal with
when developing larger applications is lazy evaluation. While it allows for elegant
solutions to a lot of problems, and can even make programs more efficient by
evaluating only what is needed, our experience has shown that when dealing with
really large data sets, laziness will delay many computations, and the program
will take up huge amounts of heap space. Fortunately, there are several remedies.

Functions can be made strict by using “seq” to force evaluation of their argu-
ments. As it is not always obvious which functions should be made strict, time
profiling is needed to identify possible candidates. To assess whether the impor-
tant functions are as strict as possible, inspection of the Core code generated by
GHC is necessary. Thus, making a function strict is possible, but quite labo-
rious, and it can make the resulting more difficult to read, loosing some of the
conciseness emphasized in Section 6.1. Hopefully this will be remedied with the
introduction of the so-called bang patterns proposed for the upcoming Haskell’
standard [1].

Using strictness flags (“!”) to force the evaluation of the arguments of a data
constructor is another way to remove some laziness, and in combination with the
“UNPACK” pragma this can even help in reducing excessive memory consump-
tion.

Other means in reducing memory consumption are of course using appropriate
data types. For example, CondorCKD uses a lot of small objects for represent-
ing so called conjunctions (think of these as simple logical formulas representing
the premises of rules). Initially, these conjunctions where implemented using
nested lists of Ints. In retrospect, this can only be considered naive, because of
Haskell’s lazy evaluation, every list element occupies three words of memory. As
the flexibility offered by lists was not needed for representing conjunctions, these
have replaced by unboxed arrays of Ints, leading to some serious reduction in
memory requirements.

7 Conclusion

We have introduced our implementation of CondorCKD, a novel algorithm for
knowledge discovery based on the principle of maximum entropy. We have used
Haskell for its implementation, whereas our choice was based on our expectation

23

to be able to quickly implement the algorithm based on its abstract, high-level
description. Haskell has lived up to our expectations, as a prototype was im-
plemented quite rapidly, though optimizing its run-time behaviour and memory
consumption was a lengthier – and sometimes problematic – process, though this
is the case with every optimization. Nonetheless, the resulting code displays the
brevity ascribed to functional programs, as the whole documented codebase in-
volves little more than 9000 lines of code, including a GUI. An implementation
written in C++ or Java can be expected to be several times larger, and despite
being optimized, the Haskell code still closely resembles its abstract description,
a definite advantage over imperative languages.

Having several well designed libraries available during development, including
several collection types, a parser library and a GUI-library, was also beneficial.
Haskell’s development tools, especially GHC with its profiling abilities, were of
great use in optimizing the algorithms.

Currently, we’re planning to further refine and enhance our algorithm and its
implementation. This includes work to further reduce the memory consumption,
but also trying to utilize external data storage, because when analyzing large and
complex data sets, the intermediate data structures computed by our algorithm,
esp. the cycles (see Section 4), will definitely be too large to fit into even todays
computer’s main memory.

We will also develop an inference algorithm utilizing the discovered rules to
draw information-optimal conclusions, see [8]. This will also be done in Haskell,
because for us, Haskell was a very good choice.

Acknowledgements

The research reported here was partly supported by the DFG – Deutsche
Forschungsgemeinschaft (grant BE 1700/5-3).

References

[1] Bang pattern proposal. http://hackage.haskell.org/trac/

haskell-prime/ticket/76 (06.01.2006).

[2] C. Beierle and G. Kern-Isberner. An alternative view of knowledge discovery.
In Proceedings Hawaii International Conference on System Sciences, HICSS-
36. IEEE Computer Society, 2003.

[3] C. Beierle and G. Kern-Isberner. Modelling conditional knowledge discovery
and belief revision by abstract state machines. In E. Boerger, A. Gargantini,
and E. Riccobene, editors, Abstract State Machines 2003 – Advances in The-
ory and Applications, Proceedings 10th International Workshop, ASM´2003,
pages 186–203. Springer, LNCS 2589, 2003.

24

[4] Amanda Clare and Ross D. King. Data mining the yeast genome in a lazy
functional language. In Verónica Dahl and Philip Wadler, editors, Practi-
cal Aspects of Declarative Languages, 5th International Symposium, PADL
2003, Proceedings, volume 2562 of Lecture Notes in Computer Science, pages
19–26. Springer, 2003.

[5] Andy Gill. Debugging haskell by observing intermediate data structures.
Electronic Notes in Theoretical Computer Science, 41(1), 2000.

[6] John Hughes. Why functional programming matters. The Computer Jour-
nal, 32(2):98–107, 1989.

[7] E.T. Jaynes. Papers on Probability, Statistics and Statistical Physics. D.
Reidel Publishing Company, Dordrecht, Holland, 1983.

[8] G. Kern-Isberner. Characterizing the principle of minimum cross-entropy
within a conditional-logical framework. Artificial Intelligence, 98:169–208,
1998.

[9] G. Kern-Isberner. Solving the inverse representation problem. In Proceedings
14th European Conference on Artificial Intelligence, ECAI’2000, pages 581–
585, Berlin, 2000. IOS Press.

[10] G. Kern-Isberner and J. Fisseler. Knowledge discovery by reversing induc-
tive knowledge representation. In Proceedings of the Ninth International
Conference on the Principles of Knowledge Representation and Reasoning,
KR-2004. AAAI Press, 2004.

[11] David J. King and John Launchbury. Structuring depth-first search algo-
rithms in haskell. In Proceedings of the 22nd ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL’95), pages 344–354.
ACM Press, 1995.

[12] Daan Leijen. wxHaskell – a portable and concise GUI library for Haskell. In
ACM SIGPLAN Haskell Workshop (HW’04). ACM Press, 2004.

[13] Daan Leijen and Erik Meijer. Parsec: Direct style monadic parser combi-
nators for the real world. Technical Report UU-CS-2001-27, Department of
Computer Science, Universiteit Utrecht, 2001.

[14] Prabhaker Mateti and Narsing Deo. On algorithms for enumerating all cir-
cuits of a graph. SIAM Journal on Computing, 5(1):90–99, 1976.

[15] Stephen Muggleton and Luc De Raedt. Inductive logic programming: The-
ory and methods. Journal of Logic Programming, 19/20:629–679, 1994.

[16] D. J. Newman, S. Hettich, C. L. Blake, and C. J. Merz. UCI repository of
machine learning databases, 1998.

25

[17] Chris Okasaki. An overview of edison. Electronic Notes in Theoretical Com-
puter Science, 2000(1):60–73, 2000.

[18] J.B. Paris. The uncertain reasoner’s companion – A mathematical perspec-
tive. Cambridge University Press, 1994.

[19] R. C. Read and R. E. Tarjan. Bounds on backtrack algorithms for listing
cycles, paths, and spanning trees. Networks, 5(3):237–252, 1975.

[20] Edward M. Reingold, Jurg Nievergelt, and Narsingh Deo, editors. Com-
binatorial Algorithms: Theory and Practice, chapter Graph Algorithms.
Prentice-Hall, Englewood Cliffs, 1977.

[21] Colin Runciman and David Wakeling. Heap profiling of lazy functional pro-
grams. Journal of Functional Programming, 3(2):217–245, 1993.

[22] Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning
Tools and Techniques. Morgan Kaufmann, 2005.

26

