
Electronic Notes in Theoretical Computer Science 36 (2000)
URL: http://www.elsevier.nl/locate/entcs/volume36.html 17 pages

Defining Standard Prolog in Rewriting Logic

M. Kulaš and C. Beierle

FernUniversität Hagen, FB Informatik, D-58084 Hagen, Germany
marija.kulas@fernuni-hagen.de, christoph.beierle@fernuni-hagen.de

Abstract

The coincidence between the model-theoretic and the procedural semantics of SLD-
resolution does not carry over to a Prolog system that also implements non-logical
features like cut and whose depth-first search strategy is incomplete. The purpose
of this paper is to present the key concepts of a new, simple operational semantics of
Standard Prolog in the form of rewriting rules. We use a novel linear representation
of the Prolog tree traversal. A derivation is represented at the level of unification
and backtracking. The rewriting system presented here can easily be implemented
in a rewriting logic language, giving an executable specification of Prolog.

1 Introduction

There are numerous approaches dealing with Prolog’s logical core, Horn clause
programming, or various extensions of it. [2] is a classical paper dealing with
SLD-resolution and defining an SLD-tree representation suitable for pure logic
programming. However, the coincidence between the model-theoretic and the
procedural semantics based on SLD-resolution does not carry over to a Prolog
system that also implements extra-logical features and whose search strategy
is typically incomplete. Many authors therefore abandon the classical, logical
semantics and propose other semantics. The usual depth-first search employed
in actual Prolog systems is modelled by the denotational semantics approaches
of Jones and Mycroft [12], Nicholson and Foo [18], Debray and Mishra [8], de
Vink [7] or Baudinet [4]. Among the first to specify backtracking and cut
as an elegant use of continuations was also D. Schmidt [21]. The language
constructs covered in these approaches include the cut operator, but further
advanced control constructs like catch/throw or database predicates are not
treated.

Continuations play a central role in denotational semantics, but it can
also be beneficial to have them at the source level [6], [23]. Brisset and Ri-
doux [6] extend the semantics of [18] to cover new built-ins (for λProlog) that
explicitly manipulate success and failure continuations. In [15] continuation
passing is used for an intermediate representation for compilation to an ab-

c©2000 Published by Elsevier Science B. V.



Kulaš and Beierle

stract machine. Our approach is also based on continuations, i. e. on a simple
operational rendering of success/failure continuations.

Operational semantics of Horn clauses is studied in detail by Andrews in
[1]. The semantics is expressed by rewriting systems that operate on back-
tracking stacks, i. e. sequences of pairs of substitutions (computed so far) and
goals (still to be resolved). The work in [1] focusses on various combinations
of parallel and sequential ‘and’ resp. ‘or’ search strategies for Horn logic; there
is no treatment of extra-logical features like cut, negation-as-failure, etc. Op-
erational semantics of Horn clauses has been given by [13] as well, within the
implementation of constraint logic programming in ELAN. Backtracking is in
[1],[13] modelled by nondeterministic choice.

The approaches cited above do not cover all of Prolog’s built-ins. Two fur-
ther approaches, [10] and [5], explicitly aim at covering full Standard Prolog.
Deransart and Ferrand [10] introduce a logic programming based specification
language together with an abstract data structure, the ‘visited search tree’,
used for representing the semantics of a Prolog program. Based on these
notions, the semantics of Prolog predicates is defined basically in terms of
transitions of search trees. Whereas this approach uses logic programming
as a full, but rather complex and somewhat low-level specification language,
Börger and Rosenzweig [5] use abstract state machines (ASM), previously
known as evolving algebras, to “provide a primary mathematical definition of
Prolog”. ASMs allow for high-level specifications, but the specification given
in [5] is not easily executable by a standard tool like term rewriting.

The aim of the work reported here is to provide an intuitive, lean, easily
executable semantics of full Prolog, including all its control constructs like
meta-call, cut, if-then, catch, throw, all database operations like assert and
retract. We came up with a simple, continuation-based operational model.
Some features of our approach:

• a novel linear representation of the Prolog tree traversal, enabling compar-
atively small and readable specifications

• a deterministic representation of backtracking

• easy finding of ancestors, therefore suitable for representing cut and catch/throw
in essentially the same, programmer-friendly way

The semantics is presented in the form of (conditional) rewriting rules of
rewriting logic [17]. Currently we are implementing our rewriting system in
Maude 1 . This paper presents the basic concepts of our approach (Sec. 2) and
illustrates it on some of the key Prolog constructs, including extra-logical fea-
tures like cut, catch and throw, as well as database update predicates (Sec. 3).
In Sec. 4 we give two detailed examples. Section 5 rounds off the survey of
related work. Section 6 points out some possible continuations of this work.

1 we already have an implementation in Prolog

2



Kulaš and Beierle

2 Representing derivation states and answers

A top-level goal G0 we represent as

DJG0K •

with an operational reading start the derivation of G0. The D is the derivation
operator, D-operator for short. Its argument in brackets represents the current
goal. The fat point is marking the end of the whole derivation state.

2.1 Getting the first answer

The answer of a conforming Prolog processor is represented by non-reducible
terms of our rewriting system. (We are talking about the answer here because
of course a Prolog processor is deterministic.) Let us consider in turn the
answer in case of success and in case of failure.

A successful derivation of a goal G0 ends in a sequence

σ1σ2 . . .σnCΦn−1JGn−1K . . . CΦ1JG1KCΦ0JG0K •

Here we have n substitutions at the beginning of the sequence, representing
the most general unifiers (mgu’s) used in the derivation. For each of the sub-
stitutions there is a continuation, depicted by the C-operators, memorizing
the still possible alternatives for its argument. Observe that the last continu-
ation contains the original goal, the previous one contains the resolvent after
selecting the first subgoal, and so on. The C-operators may have an index,
here depicted as Φi, i = 0, ..., n− 1, which will be explained later (Sec. 3.1).

Thus, Gi is obtained from Gi−1 by resolving the first subgoal with an
appropriately renamed program clause, for each i = 1, ..., n, giving σi. Gn = ∧
is the empty word. Please note that we use postfix notation for applying a
substitution, i. e. Xσ means that the substitution σ is to be applied on the
term X.

Such a successful derivation presents the computed answer substitution
σ1 ◦σ2 ◦ . . . ◦σn (composition is from left to right). However, in our approach
we want to show not only this final substitution, but all the unification and
backtracking steps made during the derivation. Backtracking means reconsid-
ering (cancelling) the already made choices (substitutions). Backtracking shall
be depicted by the undo-operator, u. The purpose of u is to cancel the imme-
diately preceding substitution. Thus, in general, a derivation state as depicted
above may contain, in front of any of the substitutions σi, a subsequence of
cancelled substitutions which looks like this (here ρj are substitutions):

ρ1ρ2 . . .ρk uu . . .u︸ ︷︷ ︸
k

In case of a successful derivation, the final derivation state will show a number
of continuations equal to the number of non-cancelled substitutions.

3



Kulaš and Beierle

For a failed derivation the picture is simple:

σ1 . . .σn u . . .u︸ ︷︷ ︸
k

u •

where k is the number of remaining substitutions in the sequence σ1 . . .σn
that have not already been cancelled by a matching u to the left of σn.

In the Sec. 3 we will develop a system SP for rewriting derivation states as
an operational semantics for Prolog. If SP terminates on a derivation state
S, then SP(S) denotes the unique normal form of S with respect to SP.
For any derivation state S in normal form (with respect to SP) we define

ExtractAnswer(S)

by the exhaustive application of the following two rules 2 to S.

σ u ⇒ ∧

C(Φ)JXK ⇒ ∧

where a rule having (Φ) as the index of a D or a C operator is actually an
abbreviation for two rules, one where the operator does not have any index,
and the other where the index is Φ, consistently throughout the rule.

The cumulative effect of the rules for ExtractAnswer(S) is to erase all
continuations (with or without indices) and all cancelled substitutions.

2.2 Moving on

In order to get not only the first answer substitution, we model a user’s request
for further answers. For any derivation state S in normal form (with respect
to SP) we define

StartBacktracking(S)

by applying the rewrite rule

σ C(Φ)JXK ⇒ σ u C(Φ)JXK

to S. Inserting the undo-operator u initiates backtracking and corresponds
exactly to the typing of ‘;’ to a Prolog processor’s top-level loop. Now we can
again apply SP to StartBacktracking(S). Therefore, we define the following:

If SP does not terminate on DJGK • , then answer1(G) is undefined. Oth-
erwise, we set

answer1(G) =def ExtractAnswer(SP(DJGK •))

next1(G) =def StartBacktracking(SP(DJGK •))
2 Recall that ∧ denotes the empty word.

4



Kulaš and Beierle

For k > 1, if answerk−1(G) is undefined or SP does not terminate on nextk−1(G),
then answerk(G) is undefined. Otherwise, we set

answerk(G) =def ExtractAnswer(SP(nextk−1(G)))

nextk(G) =def StartBacktracking(SP(nextk−1(G)))

So much to the initial and final states of a derivation. Actually, our ob-
jective is somewhat more general, to represent any intermediate states of a
Prolog derivation, at the level of unification and backtracking.

A typical intermediate state will contain the derivation operator (precisely
once) and an arbitrary number of continuations (corresponding to the number
of non-cancelled substitutions, or exceeding it by one), and it will be reducible
by one of the rules of the following section.

3 Rewriting derivation states

In this section we introduce our rewriting system SP. Let us start by showing
how a resolution of a user-defined predicate looks like in our approach.

3.1 User-defined predicates

In case the predicate of the goal X is not built-in, its definition def(X) with
respect to the user’s program Π (i. e. the clauses defining the predicate of X )
will be fetched, and the choice points for X will be restricted to this definition.
This is expressed in the first rule below. The restriction will be carried as
parameter to the derivation operator, here shown as index.

Note how the first rule implements the logical update view of Lindholm
and O’Keefe [16], saying that the definition of a predicate shall be fixed at the
time of its call.

DJX, Y K ⇒ DΦJX, Y K if ¬builtin(X) and Φ = def(X)

DΦJX, Y K ⇒ σ DJ(R, Y )σKCΦ′JX, Y K if resolve(X,Φ) =< σR Φ′ >

DΦJX, Y K ⇒ u if resolve(X,Φ) = u

The second rule implements the actual resolution step. If our goal can be
resolved with respect to the restriction Φ, giving a resolvent R and the most
general unifier σ, then the current goal will be replaced in the expected way.

Furthermore, the derivation state will be enhanced by the substitution σ
to the left of the D-operator, and by a continuation to the right of it. Namely,
we must remember the possible further ways to resolve the goal, represented
by the rest of the restriction Φ after removing the non-applicable clauses as
well as the consumed ones so far. This leaves us with the choice points Φ′. In
case of backtracking, the alternative derivation paths shall be activated, but

5



Kulaš and Beierle

for the time being they are dormant, represented by the continuation operator
C (with or without an index).

The third rule handles the case that our goal cannot be resolved. Then the
current goal will be erased altogether and replaced by a special undo-operator
u meaning that backtracking shall be started. Notice that the D-operator
has vanished. So now the C-operators must take over. For an illustration, see
Sec. 4.1.

3.2 Backtracking

The following three rules implement backtracking. The first one handles
the case that the continuation wasn’t restricted (there is no index to the
C-operator).

uCJXK ⇒ uDJXK

uCΦJXK ⇒ uDΦJXK if Φ 6= ∅

uC∅JXK ⇒ uu

In case there was a restriction, it has to be propagated. This is the meaning
of the second rule. The third rule handles the special case that a continuation
is empty, i. e. there are no choice points left. This is represented by the empty
set ∅ as the index of the continuation.

What do these rules mean? Quite simply, if there is a non-empty contin-
uation immediately to the right of a u, then it shall be activated, i. e. turned
into the current goal. 3

3.3 Some easy logic-and-control, part I: true, fail, halt

The first two rules are straightforward. The last two are a bit more interesting:
due to the fact that the meta-operators Halt and Error are nowhere further
specified, by any other rules, and the D-operator is gone, the net effect of each
of these two rules is to stop the computation immediately, as intended.

DJtrue, XK ⇒ DJXK

DJfail , XK ⇒ u

DJhalt , XK ⇒ Halt

DJX, Y K ⇒ Error if var(X)

3 Actually we do not need to keep the u’s in the derivation state at all. Instead we could
have postulated the following rule σuCJXK ⇒ DJXK, as well as σuC∅JXK ⇒ u, to cancel
all the ‘fallible’ substitutions right away. But in this paper we are simply giving our most
detailed view of a derivation, and not considering any optimizations.

6



Kulaš and Beierle

Of course, error handling of the built-in predicates can be more refined, but
here we disregard this issue.

Now at the latest we have to introduce a synactical convention we already
used: Whenever we write a conjunctive goal X, Y as the argument of our
operators, the tail of this conjunction may be empty, in which case the until
now undisclosed ∧-rule takes over:

DJ∧K ⇒ ∧

Here we slightly abuse the Prolog syntax for the sake of readability. In practice
this is not a problem, since one would more likely represent a derivation state
as a list than as a conjunction anyway.

3.4 Term unification

This should be straightforward by now.

DJ(X = Y ), ZK ⇒ σDJZσKC∅J(X = Y ), ZK if unify(X,Y ) = σ

DJ(X = Y ), ZK ⇒ u if unify(X,Y ) = u

3.5 Meta-call, first draft

As a first try we might define the meta-call like this

DJcall(X), Y K ⇒ DJX, Y K

but that would be wrong, strictly speaking. Meta-call would behave correctly,
except that it would be transparent for cut, meaning a cut within the meta-
call would go too far. See [19] for a comprehensive discussion of cut and the
problem of transparency.

3.6 Meta-call, correct version (opaque for cut)

To rectify this, we use a dummy ‘insulating layer’, an empty continuation.
This should be clear from the specification of cut in the following (Sec. 3.8).

DJcall(X), Y K ⇒ εDJX, Y KC∅Jcall(X), Y K

The symbol ε denotes the trivial (identity) substitution. We need it in several
rules in order to preserve the correspondence between the substitutions and
the continuations resp. the undo-operators u.

This is necessary because we need to know, in case of backtracking, which
substitution precisely is going to be undone. So in case the rule introduces a
choice point (represented by a continuation), there has to be a corresponding
substitution, even a trivial one, ε.

7



Kulaš and Beierle

3.7 Some easy logic-and-control, part II: repeat, negation

Here we show some ‘derived’ built-ins, i. e. some that can be defined in terms
of others. Strictly speaking, they do not need an own specification, since
they can be treated like user-defined, but are presented here nevertheless as
exercises.

DJrepeat , XK ⇒ εDJXKCJrepeat , XK

DJ\+(X), Y K ⇒ εDJcall(X), !, failKCJY K

3.8 Cut

The idea is quite intuitive, namely the parent of the cut sequence must be
found and all the choices underway made deterministic, i. e. all the continua-
tions emptied. That is all. To find the parent, we take advantage of our Prolog
tree representation, allowing for a very simple syntactic criterion, namely:

Suffix criterion Let the current goal be X ,Y . To find the parent of X , look
for the leftmost continuation whose argument C does not end in X ,Y (more
formally: X ,Y is not an instance of a proper suffix of C ).

As to the actual specification, a few more words are necessary, due to the
rewriting formalism. We found specifying in Prolog here of advantage, having
subroutines that work upon the whole input sequence, instead of a definite
portion. But the subroutines we need here are not difficult to simulate in
rewriting, due to the fact that they are very simple. When the first literal in
the current goal is a cut, we basically have to start a sub-routine ‘cutting out’
all the alternatives (represented here by emptying the continuations) until
the parent of the current goal has been found. On finding the parent, its
continuation shall also be emptied, and that concludes the sub-routine, so we
can continue deriving the rest of the current goal. We implemented this in
rewriting by means of several markers, namely:

Pending(X) ; place-holder

Pending(X) Parent((!, Y )) ; start the subroutine for cut and mark the entry point

Parent(X) ; search the parent of X, removing choices underway

Return ; now that you have found the parent, go back

Here are the actual rewriting rules 4 for cut.

4 Recall that a rule having (Φ) as the index of a continuation is actually an abbreviation
for two rules, one where the continuation does not have any index, and the other where the
index is Φ.

8



Kulaš and Beierle

DJ!, XK ⇒ Pending(DJXK ) Parent((!, X))

Parent(G) C(Φ)JHasK ⇒ C∅JHasK Parent(G) if suffix(Has ,G)

Parent(G) C(Φ)JHasntK ⇒ Return C∅JHasntK if ¬suffix(Hasnt ,G)

Parent(G) • ⇒ Return

C(Φ)JXK Return ⇒ Return C(Φ)JXK

Pending(G) Return ⇒ G

Observe that we do not need a special ‘cut-marker’ [12,8,4,7] or ‘cut-parent’
[5], because in our approach the cut-parent is literally the parent of the cut
(starting the current goal), and the parent of any goal can in our approach
be found by the simple syntactic criterion from above, the suffix-criterion.
Incidentally, note that, due to the intricacies of the standard specification of
if-then-else, as in [9], we had to be careful with our specification of it, see [14],
so that the cut-parent may indeed uniformly be the parent of the current cut.

A collateral advantage of our representation of the Prolog tree is that the
algorithm for cut can be easily generalized for throw.

3.9 Catch and throw

To find the right node in the Prolog tree to go to upon encountering throw(Ball),
we have to find, according to [9], ”the closest ancestor node whose chosen pred-
ication has the form catch(Goal ,Catcher ,Recovergoal), which is still executing
its Goal argument and such that a freshly renamed copy Ball ′ of Ball unifies
with Catcher”.

What this amounts to in our representation, is: search along the chain of
parents (by the suffix-criterion, Sec. 3.8) for the goal starting with catch(G,B,R).

DJcatch(G,B,R), XK ⇒ εDJG,XKCJcatch(G,B,R), XK

DJthrow(B), XK ⇒ ThrowAnc((throw(B), X),(throw(B), X))

ThrowAnc(T ,X) C(Φ)JCK ⇒ uThrowAnc(T ,X) if suffix(C,X)

ThrowAnc((throw(B), Y ),X) CJCK ⇒ uσDJ(R,Z)σKC∅JCK if ¬suffix(C,X)

and C = (catch(G,B′, R), Z) and unify(fresh(B),B′) = σ

ThrowAnc(T ,X) C(Φ)JCK ⇒ uThrowAnc(T ,C) if ¬suffix(C,Y )

and
(
C 6= (catch(G,B′, R), Z) or Φ = ∅ or unify(fresh(B),B′) = u

)
ThrowAnc(T ,X) • ⇒ Error

uCJcatch(G,B,R), ZK ⇒ uu

9



Kulaš and Beierle

3.10 Clause creation and destruction

To specify the builtins responsible for database updates, we add the user’s pro-
gram Π to our derivation state, making it a global parameter of the derivation.
So we would actually start with the following derivation state:

PJΠKDJG0K •

DJasserta(K), XK ⇒ Update(asserta(K)) Pending(DJasserta(K), XK )

DJretract(K), XK ⇒ Update(retract(K)) Pending(DJretract(K), XK )

PJΠK Update(asserta(K)) ⇒ PJΠ′K Return(ε) if addaclause(K,Π) = Π′

PJΠK Update(retract(K)) ⇒ PJΠ′K Return(σ) if delfirstclause(K,Π) =< σΠ′ >

PJΠK Update(retract(K)) ⇒ PJΠK Return(u) if delfirstclause(K,Π) = u

X Update(How) ⇒ Update(How)X if X 6= PJ.K

Return(Z) Pending(DJasserta(K), XK ) ⇒ DJXK

Return(σ) Pending(DJretract(K), XK ) ⇒ σDJXσKCJretract(K), XK

Return(u) Pending(DJretract(K), XK ) ⇒ u

Return(Z) X ⇒ X Return(Z) if X 6= Pending(.)

Good news: All the rules introduced so far remain the same, and in fact the
first rule of Sec. 3.1 relies upon some such program representation in order to
fetch the definition def(X) of a user-defined goal X.

Here we recycled the place-holding marker Pending from Sec. 3.8, and in-
troduced a further marker Update whose purpose is to find and update the
program. The subroutine-exiting marker Return (cf. Sec. 3.8) is used to bring
the resulting substitution back to the pending goal.

3.11 Disjunction, first draft

Until now we considered only ‘atomary’ goals, i. e. literals. But the Prolog
syntax allows for embedded disjunction. The first try could be to specify
disjunction as

DJ(X;Y ), ZK ⇒ εDJX,ZKCJY, ZK

But that wouldn’t be correct, because now the transparence for cut is gone.
(If disjunction were opaque for cut, a typical repeat-cut-fail loop would never
terminate.)

10



Kulaš and Beierle

3.12 Disjunction, correct version (transparent for cut)

So how to specify disjunction so as to be transparent for cut, and at the same
time preserve our simple suffix-criterion? Seems impossible, but there is a way
to it. For this purpose we re-interpret the syntax of the goal (with respect
to the Prolog syntax) so that the interpunction signs ′(′, ′;′ and ′)′ acquire a
new meaning: they can now be goals. Therefore, our original goal can now,
syntactically, only be a conjunction.

More precisely, we perform a source-to-source transformation (‘conjunc-
tifying’) which takes as input an arbitrary Prolog goal, and produces a flat
conjunction of literals, enriched with the three special goals ′(′, ′;′ and ′)′ used
solely for disjunction. Thus, the disjunction X;Y is transformed into the
conjunction ′(′, X, ′;′ , Y, ′)′. Obviously, apart from adding or removing some
brackets, this transformation does not change the sequence of symbols mak-
ing up the goal (‘the looks’ of it), it just ‘dissolves’ the disjunction. Assuming
a disjunction is given in the dissolved form, we specify its meaning by the
following four rewriting rules:

DJ(, X, ; , Y, ), RestK ⇒ εDJX, ; , Y, ), RestKCJ;X, ; , Y, ), RestK

DJ; , Y, ), RestK ⇒ DJ), RestK

DJ), RestK ⇒ DJRestK

uCJ; , X, ; , Y, ), RestK ⇒ uDJY, ), RestK

It should be obvious that these rules indeed specify disjunction correctly.
Transparence for cut should also be obvious, because the continuation in the
first rule has the current goal as its suffix. For an illustration see Sec. 4.2.

Good news: All the rules given in the previous sections remain the same
when switching to the dissolved form of a goal, instead of the usual Prolog
syntax. Only the first rule for if-then-else (see [14]) must be adapted for the
enhanced syntax, namely the first rules of disjunction and if-then-else have to
be blended like this:

DJ(, If → Then, ; ,Else, ), ZK ⇒ DJ(, once(If ), ThisBranch(once(If )) ,Then, ; ,Else, ), ZK

DJ(, X, ; , Y, ), ZK ⇒ εDJX, ; , Y, ), ZKCJ;X, ; , Y, ), ZK if X 6= (If →Then)

The first rule handles the special case of a disjunction which is also an if-then-
else, eliminating the if-then. The second rule handles the general case.

4 Some examples

4.1 Horn clause programming

Let our program Π consist of the following three pure Prolog clauses K1, K2

and K3.

11



Kulaš and Beierle

p(1) :– p(2), p(3). % K1

p(2) :– p(4). % K2

p(4). % K3

We show a step-by-step derivation of a non-deterministic goal p(X).

DJp(X)K

⇒ DΦJp(X)K by 3.1, rule 1, Φ={K1, K2, K3}

⇒ σ1DJp(2), p(3)KCΦ′Jp(X)K by 3.1, rule 2, σ1={X/1}, Φ′={K2, K3}

⇒ σ1DΦJp(2), p(3)KCΦ′Jp(X)K by 3.1, rule 1

Note that we used the same index as in the second line, which is correct since
def(p(X))=def(p(2))={K1, K2, K3}.

⇒ σ1εDJp(4), p(3)KCΦ′′Jp(2), p(3)KCΦ′Jp(X)K by 3.1, rule 2, Φ′′={K3}

⇒ σ1εDΦJp(4), p(3)KCΦ′′Jp(2), p(3)KCΦ′Jp(X)K by 3.1, rule 1

⇒ σ1εεDJtrue, p(3)KC∅Jp(4), p(3)KCΦ′′Jp(2), p(3)KCΦ′Jp(X)K by 3.1, rule 2

⇒ σ1εεDJp(3)KC∅Jp(4), p(3)KCΦ′′Jp(2), p(3)KCΦ′Jp(X)K by 3.3, rule 1

⇒ σ1εεDΦJp(3)KC∅Jp(4), p(3)KCΦ′′Jp(2), p(3)KCΦ′Jp(X)K by 3.1, rule 1

⇒ σ1εεuC∅Jp(4), p(3)KCΦ′′Jp(2), p(3)KCΦ′Jp(X)K by 3.1, rule 3

⇒ σ1εεuuCΦ′′Jp(2), p(3)KCΦ′Jp(X)K by 3.2, rule 3

⇒ σ1εεuuDΦ′′Jp(2), p(3)KCΦ′Jp(X)K by 3.2, rule 2

⇒ σ1εεuuuCΦ′Jp(X)K by 3.1, rule 3

⇒ σ1εεuuuDΦ′Jp(X)K by 3.2, rule 2

⇒ σ1εεuuuσ2DJp(4)KCΦ′′Jp(X)K by 3.1, rule 2, σ2={X/2}

⇒ σ1εεuuuσ2DΦJp(4)KCΦ′′Jp(X)K by 3.1, rule 1

⇒ σ1εεuuuσ2εDJtrueKC∅Jp(4)KCΦ′′Jp(X)K by 3.1, rule 2

⇒ σ1εεuuuσ2εC∅Jp(4)KCΦ′′Jp(X)K by 3.3, rule 1

No further rules of SP are applicable, so this is the normal form of our initial
derivation state DJp(X)K • with respect to SP, or more formally:

SP(DJp(X)K •) = σ1εεuuuσ2εC∅Jp(4)KCΦ′′Jp(X)K •

(We left out the end-marker • from the above steps because it didn’t play an
active part in this particular derivation.)

12



Kulaš and Beierle

According to our simulation of a conforming Prolog processor (Sec. 2), the
first computed answer substitution shall be obtained from answer1(p(X))

answer1(p(X)) = ExtractAnswer(σ1εεuuuσ2εC∅Jp(4)KCΦ′′Jp(X)K •)
= σ2ε •

by composing the substitutions, finally giving σ2 as the computed answer
substitution, which is obviously correct here.

What if we want further answers? Well, on the top-level of a Prolog
processor we would type a semicolon ′;′. In our model this corresponds to
rewriting, with respect to SP, the sequence next1(p(X))

next1(p(X)) = StartBacktracking(σ1εεuuuσ2εC∅Jp(4)KCΦ′′Jp(X)K •)
= σ1εεuuuσ2εuC∅Jp(4)KCΦ′′Jp(X)K •

So the sequence generated by next1(p(X)) is the new starting state for SP.

σ1εεuuuσ2εuC∅Jp(4)KCΦ′′Jp(X)K

⇒ σ1εεuuuσ2εuuCΦ′′Jp(X)K by 3.2, rule 3

⇒ σ1εεuuuσ2εuuDΦ′′Jp(X)K by 3.2, rule 2

⇒ σ1εεuuuσ2εuuσ3DJtrueKCΦ′′′Jp(X)K by 3.1, rule 2, σ3={X/4}, Φ′′′=∅

⇒ σ1εεuuuσ2εuuσ3C∅Jp(X)K by 3.3, rule 1

The second answer will be given by

answer2(p(X)) = ExtractAnswer(σ1εεuuuσ2εuuσ3C∅Jp(X)K •)
= σ3 •

The computation of further answers will start from the sequence

next2(p(X)) = StartBacktracking(σ1εεuuuσ2εuuσ3C∅Jp(X)K •)
= σ1εεuuuσ2εuuσ3uC∅Jp(X)K •

and won’t last long:

σ1εεuuuσ2uuσ3uC∅Jp(X)K

⇒ σ1εεuuuσ2uuσ3uu by 3.2, rule 3

giving as the third answer

answer3(p(X)) = ExtractAnswer(σ1εεuuuσ2uuσ3uu •)
= u •

13



Kulaš and Beierle

meaning that there is no further answer substitution, so the computation of
p(X) is finished.

4.2 Repeat, disjunction, cut

Let our program Π consist of the following three clauses.

q :– repeat, p(X), (X=b, !; fail).

p(a).

p(b).

We illustrate the vital importance of the disjunction’s cut transparency for
the universal termination of the repeat loop.

DJqK

⇒ εDJrepeat , p(X), (X = b, !; fail)KC∅JqK

⇒ εεDJp(X), (X = b, !; fail)KCJrepeat , p(X), (X = b, !; fail)KC∅JqK

⇒ εεσ1DJtrue, (a = b, !; fail)KCΦJp(X), (X = b, !; fail)KCJrepeat , p(X), (X = b, !; fail)KC∅JqK

⇒ εεσ1DJ(a = b, !; fail)KCΦJp(X), (X = b, !; fail)KCJrepeat ...KC∅JqK

⇒ εεσ1εDJa = b, !; fail)KCJ; a = b, !; fail)KCΦJp(X), (X = b, !; fail)KCJrepeat ...KC∅JqK

⇒ εεσ1εuCJ; a = b, !; fail)KCΦJp(X), (X = b, !; fail)KCJrepeat ...KC∅JqK

⇒ εεσ1εuDJfail)KCΦJp(X), (X = b, !; fail)KCJrepeat ...KC∅JqK

⇒ εεσ1εuuCΦJp(X), (X = b, !; fail)KCJrepeat ...KC∅JqK

⇒ εεσ1εuuDΦJp(X), (X = b, !; fail)KCJrepeat ...KC∅JqK

⇒ εεσ1εuuσ2DJ(b = b, !; fail)KC∅Jp(X), (X = b, !; fail)KCJrepeat ...KC∅JqK

⇒ εεσ1εuuσ2εDJb = b, !; fail)KCJ; b = b, !; fail)KC∅Jp(X), (X = b, !; fail)KCJrepeat ...KC∅JqK

⇒ εεσ1εuuσ2εεDJ!; fail)KC∅Jb = b, !; fail)KCJ; b = b, !; fail)KC∅Jp(X)...KCJrepeat ...KC∅JqK

⇒ εεσ1εuuσ2εεDJ; fail)KC∅Jb = b, !; fail)KC∅J; b = b, !; fail)KC∅Jp(X)...KC∅Jrepeat ...KC∅JqK

⇒ εεσ1εuuσ2εεC∅Jb = b, !; fail)KC∅J; b = b, !; fail)KC∅Jp(X)...KC∅Jrepeat ...KC∅JqK

Notice, in the third and the second line from below, how the suffix criterion
’swipes clean’ the continuations up to, and including, the one for repeat . This
is essential for the termination of the loop.

5 Related approaches (coda)

To our knowledge, the first operational semantics for pure Prolog with cut
was proposed by Jones and Mycroft in [12] (also used in [8]). The operational
model of [12], a structure-sharing interpreter, employs, like we do, the idea

14



Kulaš and Beierle

of memorizing alternative computation paths by means of ‘filing’ the current
goal plus the rest of the definition for its leftmost literal. But, by simplifying
some design decisions of [12], on the questions of what the current goal is,
and how to handle the variables, we obtained a model which appears to be
both simpler and more expressive. To accomodate cut, [12] had to enrich their
model of pure Prolog (by an additional stack per subgoal). It was not clear
how to accomodate e. g. catch/throw, or findall.

More specifically, in [12] the current goal does not mean the rest of the
path, as here, but rather just the current subgoal (this can be: a top-level
goal, or a body of a clause). The advantages of this representation begin to
dwindle when cut is a part of the language. To accomodate cut, in [12] each
subgoal has to bookkeep an additional ‘dump’ stack, which is a rest of the
whole state. Dump stack is also used in [7]. As opposed to this, our con-
cept of the current goal enables the simple suffix-criterion, giving the cut and
catch/throw for free, i. e. without any additional bookkeeping. Also, for the
purposes of renaming and computing answer substitutions, [12] needs for each
path bookkeeping of the ‘current substitution’ and, in [8], for each subgoal
the ‘project variables’ (those relevant for the parent goal). In our approach
unifiers are not ‘composed away’ into the current substitution, so for comput-
ing the answer substitutions it suffices to bookkeep, once for the whole state,
the sequence of unifiers: a forward step inserts a unifier, and a backward step
cancels a unifier. This suffices also for renaming, which we didn’t elaborate
in this paper, but is implicit in resolve(X ,Φ) and delfirstclause(K ,Π), as well
as explicit, in fresh(X ), which is used for catch/throw and findall. So it is
sufficient to have the substitutions as a global parameter, in the same manner
as the user’s program is treated, thereby further reducing bookkeeping.

6 Conclusions and further work

We presented a new, simple operational semantics for Standard Prolog. The
first main novelty is a non-traditional representation of success/failure contin-
uations, used for a liner rendering of the Prolog computation tree. In partic-
ular, it allows for the simple suffix-criterion, which enables the specification
of cut or catch/throw without the need for cut-markers or other additional
mechanisms. The second main novelty is the simple way of handling variables,
due to not composing the unifiers. In addition to the Prolog features treated
in this paper, in [14] we cover several more builtin predicates, rounding up on
what is commonly seen as ‘the’ characteristic subset of Standard Prolog (logic
and control, database update and all-solution predicates).

Since, in this paper, by Prolog we refer to the full language including all its
extralogical features, we cannot expect to establish a complete correspondence
between the well-known results about the model-theoretic, fixpoint and SLD-
resolution based semantics of (pure) logic programming [2] and our operational
semantics. However, when restricted to pure Prolog, our operational seman-

15



Kulaš and Beierle

tics precisely reflects the SLD-resolution semantics based on SLD-trees with
a depth-first, left-to-right search strategy. For example, assume a pure Prolog
program and a (pure Prolog) goal G. If SP terminates on S = DJGK • and Ex-
tractAnswer(SP(S)) = σ1σ2...σn •, then the composition σ = σ1 ◦σ2 ◦ ... ◦σn
is a correct answer substitution [2] for G. Moreover, the sequence of answer
substitutions given by answer1(G), answer2(G), answer3(G), ... corresponds
exactly to the sequence of solutions produced by a standard conforming Prolog
processor [11].

A natural future objective is to construct a denotational semantics corre-
sponding to the operational semantics given here, as exemplified by [12], [8]
and [7]. This builds the basis for validation. Further we plan to investigate
potentials of our approach in verification of program properties.

Acknowledgments

Many thanks forvaluable comments are due to the anonymous referees.

References

[1] J. Andrews. Logic Programming: Operational Semantics and Proof Theory.
Cambridge University Press, 1992.

[2] K. R. Apt and M. H. van Emden. Contributions to the theory of logic
programming. Journal of the ACM, 29:841–862, 1982.

[3] B. Arbab and D. M. Berry. Operational and denotational semantics of Prolog.
Journal of Logic Programming, 4(4):309–329, 1987.

[4] M. Baudinet. Proving termination properties of Prolog programs: A semantic
approach. Journal of Logic Programming, 14:1–29, 1992.

[5] E. Börger and D. Rosenzweig. A mathematical definition of full Prolog. Science
of Computer Programming, 24(3):249–286, 1995.

[6] P. Brisset and O. Ridoux. Continuations in λProlog. In ICLP’93: 10th Int.
Conference on Logic Programming, Budapest, 1993.

[7] E. P. de Vink. Comparative semantics for Prolog with cut. Science of Computer
Programming, 13(1):237–264, 1989.

[8] S. Debray and P. Mishra. Denotational and operational semantics for Prolog.
Journal of Logic Programming, 5(1):61–91, 1988.

[9] P. Deransart, A. Ed-Dbali, and L. Cervoni. Prolog: The Standard (Reference
Manual). Springer-Verlag, 1996.

[10] P. Deransart and G. Ferrand. An operational formal definition of Prolog: A
specification method an its application. New Generation Computing, 10:121–
171, 1992.

16



Kulaš and Beierle

[11] ISO Prolog Standard. http://www.logic-programming.org/prolog std.html.

[12] N. D. Jones and A. Mycroft. Stepwise development of operational and
denotational semantics for Prolog. In SLP’84: 1st Int. Symposium on Logic
Programming, pages 281–288, Atlantic City, 1984.

[13] C. Kirchner and C. Ringeissen. Rule-based constraint programming.
Fundamenta Informaticae, 34(3):225–262, 1998.

[14] M. Kulaš. A rewriting Prolog semantics. In CL’2000 Workshop on Verification
and Computational Logic, London, July 2000. Southampton University Tech.
Report DSSE-TR-2000-6, also http://www.ecs.soton.ac.uk/˜mal/vcl2000.html.

[15] T. Lindgren. A continuation-passing style for Prolog. In ILPS’94: 11th Int.
Symposium on Logic Programming, pages 603–617, Ithaca, NY, 1994.

[16] T. Lindholm and R. A. O’Keefe. Efficient implementation of a defensible
semantics for dynamic Prolog code. In ICLP’87: 4th Int. Conference on Logic
Programming, pages 21–39, Melbourne, 1987.

[17] J. Meseguer. Conditional rewriting logic as a unified model of concurrency.
Theoretical Computer Science, 96(1):73–155, 1992.

[18] T. Nicholson and N. Foo. A denotational semantics for Prolog. ACM Trans.
on Prog. Lang. and Systems, 11(4):650–665, 1989.

[19] R. A. O’Keefe. The Craft of Prolog. The MIT Press, 1990.

[20] M. Pettersson. Compiling Natural Semantics. PhD thesis, Linköping
University, 1995.

[21] D. A. Schmidt. Denotational Semantics. Allyn and Bacon, 1986.

[22] D. A. Schmidt. On the need for a popular formal semantics. ACM SIGPLAN
Notices, 32(1):115–116, 1997.

[23] P. Tarau and V. Dahl. Logic programming and logic grammars with
binarization and first-order continuations. In LOPSTR’94: 4th Int. Workshop
on Logic Program Synthesis and Transformation, Pisa, volume 883 of LNCS.
Springer-Verlag, 1994.

17

http://www.logic-programming.org/prolog_std.html
http://www.ecs.soton.ac.uk/~mal/vcl2000.html

	Introduction
	Representing derivation states and answers
	Getting the first answer
	Moving on

	Rewriting derivation states
	User-defined predicates
	Backtracking
	Some easy logic-and-control, part I: true, fail, halt
	Term unification
	Meta-call, first draft
	Meta-call, correct version (opaque for cut)
	Some easy logic-and-control, part II: repeat, negation
	Cut
	Catch and throw
	Clause creation and destruction
	Disjunction, first draft
	Disjunction, correct version (transparent for cut)

	Some examples
	Horn clause programming
	Repeat, disjunction, cut

	Related approaches (coda)
	Conclusions and further work

