
A Term Rewriting Scheme for Function Symbols with
Variable Arity

Manfred Widera, Christoph Beierle
Praktische Informatik VIII

FernUniversität Hagen
58084 Hagen

Abstract

Term rewriting is used for programming tasks consisting of transformations of terms
to simpler equivalent terms. In this context associative and commutative functions
appear quite often. However, their transformations may be hard to understand when
associativity and commutativity are not explicit in the transformation rules but coded
into an additional set of equations. In this paper we present a notation for rewriting
rules that makes associativity and commutativity explicit in the rewriting rules. As they
are widely used in functional programming languages we allow the use of functions with
variable number of arguments. Furthermore, our concept supports the commutative
choice of certain arguments in a function call.

Contents

1 Introduction 2

2 The new Rule Syntax 3
2.1 Functions of Variable Arity . 3
2.2 Handling Commutativity . 5
2.3 The Problem of Empty Rule Execution . 8

3 The Relation Between Normal and Extended Term Rewriting 9

4 Effect of the Syntactical Extensions on Confluence and Termination 13
4.1 Termination . 13
4.2 Local Confluence . 14
4.3 Relation to Knuth-Bendix Completion. 17

5 Conclusion and Future Work 17

1

1 Introduction

Term rewriting systems as described in detail e.g. in [1] are widely studied as a tool of analyzing
equivalence of terms. Ideally, they provide a simple formalism to reduce semantic equivalence
to syntactic equality of the normal forms.

To use term rewriting systems (trs) in that way one usually needs a set of equations that
describe an equivalence theory. From that set of equations a set of rewriting rules can be
generated automatically quite often [6].

Furthermore, term rewriting systems seem to be adequate to describe equivalence transfor-
mations on an abstract level and give an efficient implementation, provided that the used trs
are confluent and terminating. In contrast to the first view one is not only interested in the
question whether two terms are equivalent but one wants to use the equivalence theory to
transform given terms to equivalent ones with certain properties. E.g. the equation

x + (−x) = 0

not only states its left hand side and its right hand side as equivalent, but when performed
from left to right on an arbitrary term the result is an equivalent term with no unnecessary
sums of inverse numbers.

A special problem in term rewriting is given by associative and commutative functions. The
solutions on this problem in literature e.g. [7], [4] usually spot on the first application type of
term rewriting and split the set of equations into two sets R and T where R is transformed
to a set of rewriting rules. T is handled between the rewriting steps, e.g. in the unifica-
tion algorithm and usually contains equations for associativity and commutativity of several
functions.

In the context of programming by trs this splitting makes it harder to understand the trans-
formations that are performed by a pair (R, T), since the influence of the theory coded in T
is not explicitly visible in the rules of R. E.g. consider the following system:

T := {f(x, f(y, z)) = f(f(x, y), z)}, R := {f(x, f(y, g(x))) = y}
where f could be the addition + and g could be unary minus −. The transformation

f(a1, f(a2, f(a3, f(a4, f(g(a2), f(a5, a6))))))→ f(a1, f(a3, f(a4, f(a5, a6))))

can be performed by the system, but this is hard to see for the user, because of the necessary
transformations

f(a1, f(a2, f(a3, f(a4, f(g(a2), f(a5, a6))))))
=T f(a1, f(f(a2, f(f(a3, a4), g(a2))), f(a5, a6)))

2

before and

f(a1, f(f(a3, a4), f(a5, a6))) =T f(a1, f(a3, f(a4, f(a5, a6))))

after the transformation.

In studies about theoretical properties of term rewriting in the AC theory, associative and
commutative operators are handled as if they were transformed to functions of variable arity
by an operation called flattening in [5]. This paper introduces a formalism that allows to use
the view of flattened functions directly in rewriting rules, thus making them understandable
more easily. Expressing function applications as in LISP the transformation above will be
written as

(f a1 a2 a3 a4 (g a2) a5 a6)→R (f a1 a3 a4 a5 a6)

A further benefit of our new formalism is the opportunity to restrict the use of associativity
and commutativity to rules that depend on these properties and thereby to increase the
performance of a trs.

The rest of the paper is organized as follows: In Sec. 2 we define the extended rule syntax
providing tools for expressing functors of variable arity, commutative choice and the blocking
of empty rule execution. The relation to the standard syntax of trs is given in Sec. 3 on a
couple of examples. Section 4 discusses the influence of the extended syntax on the analysis
of termination and confluence and in Sec. 5 we give a conclusion.

2 The new Rule Syntax

As mentioned before the main idea for expressing associativity is to permit functions with
variable arity. Syntactic patterns for expressing a commutative choice are defined afterwards.
In a last step we address the newly arisen problem of empty rule execution and provide a tool
to solve it.

2.1 Functions of Variable Arity

Let f be a function symbol denoting an associative function. Then the execution order of
nested applications of f is irrelevant. Thus, we can write nested occurrences of f as one
application to some f ′ that takes an arbitrary number of arguments and applies f to them in
an arbitrary but fixed order, e.g. from left to right. We use LISP notation for applications of

3

f ′, i.e. an application is written as parentheses enclosing the function symbol followed by the
arguments separated by spaces. Instead of writing e.g.

(((a + (b + c)) + (d + (e + f))) + g)

we then could write (+′ a b c d e f g) with

(+′ x y) = x + y
(+′ y1 . . . yk x) = (+′ y1 . . . yk) + x (k ≥ 2)

Note that we usually identify f ′ with f and write f for both the original function and the
flattened function of variable arity.

Though the number of arguments to a function can become arbitrarily high, a rewriting rule
will always affect just a certain finite number of them, or it will perform the same operation
on all of them. We therefore need syntactical constructs that allow us to group arguments
that are either the destination to a uniform change or are not affected by the rule at all.
These constructs are defined in the following:

• For i ∈ {1, 2, . . .} the pattern < i . . . > represents an argument list of variable arity.
A pattern < i . . . > is always instantiated with the sequence of its elements without
parentheses. When showing substitutions in examples we will use square brackets [] to
make the start and the end of a list visible. The concatenation of lists is just written
as < i . . . >< j . . . >. Note that the whole expression < i . . . > is handled as a single
syntactic keyword. Several of these expressions can occur in one rule and have to be
distinguished from each other by i. i is called list counter. Two occurrences < i . . . >
and <j . . .> with i = j denote the same list.

Example 2.1 When the term (+ 1 2 3) has to be unified with (+ <1 . . .> x <2 . . .>)
there are three possibilities:

1. {<1 . . .>← [], x← 1, <2 . . .>← [2, 3]}
2. {<1 . . .>← [1], x← 2, <2 . . .>← [3]}
3. {<1 . . .>← [1, 2], x← 3, <2 . . .>← []}

This type of pattern can be used e.g. for explicitly flattening (c.f. [5]) a function.

Example 2.2 Consider the rule

(+ <1 . . .> (+ <2 . . .>) <3 . . .>)→ (+ <1 . . .> <2 . . .> <3 . . .>)

and the term (+ a b c (+ d e) f). The rule above is applicable with the substitution
{< 1 . . . >← [a, b, c], < 2 . . . >← [d, e], < 3 . . . >← [f]}. This application results in the
term (+ a b c d e f).

4

• The pattern < ai . . . ei > is used instead of < i . . . > if the individual list elements are
changed in a uniform manner. < ai . . . ei > is a syntactical keyword, too, where the
reader can think of ai as the first list element and of ei as the last one. There is only
one common list counter i for <i . . .> and <ai . . . ei >, and constructs of different kinds
must not share the same index.

There is an alternative form <t(ai) . . . t(ei)> where t(x) stands for any term containing
the variable x. This form expresses a list where all elements are instances of the pattern
t(x). The pattern <t(ai) . . . t(ei)> matches every list (v1 v2 . . . vk) where each vj is of
the form t(uj), i.e.

∀j ∈ {1, . . . , k} ∃uj . vj = σj(t(x)) with σj = {x← uj}
Please note the following correspondence between the patterns <ai . . . ei > and <t(ai)
. . . t(ei)>: If some substitution τ assigns the list (v1 v2 . . . vk) to <t(ai) . . . t(ei)> it im-
plicitly contains the assignment of (u1 u2 . . . uk) to <ai . . . ei > as well as the assignment
of (v′

1 v′
2 . . . v′

k) (v′
j := σj(t

′(x))) to <t′(ai) . . . t′(ei)> and vice versa. This ensures that
all patterns <ai . . . ei > and <t′(ai) . . . t′(ei)> occurring on the right hand side of a rule
are well-defined whenever any of the patterns <t(ai) . . . t(ei)> or <ai . . . ei > occurs on
the left hand side of the rule.

Example 2.3 Consider the rule

(∗ (+ <a1 . . . e1 >) t)→ (+ <(∗ a1 t) . . . (∗ e1 t)>)

that eliminates sums inside of products by a restricted form of distributivity: E.g. it is
applicable on the input term (∗ (+ t1 t2 t3) t′) with the substitution {< a1 . . . e1 >←
[t1, t2, t3], t← t′} and reduces it in one step to the term

(+ (∗ t1 t′) (∗ t2 t′) (∗ t3 t′))

As in the example, a rule usually contains some < ai . . . ei > together with the corre-
sponding <t(ai) . . . t(ei)>, one on each side of the rule.

2.2 Handling Commutativity

In the context of functions with variable number of arguments the different uses of commu-
tativity can be divided as follows:

1. A rule r changes a fixed number of arguments of a commutative functor. Due to the
commutativity there are several (but finitely many) rules that result from the permu-
tations of the arguments changed by r.

5

Example 2.4 For the rule

(+ <1 . . .> x <2 . . .> (− x) <3 . . .>)→ (+ <1 . . .> <2 . . .> <3 . . .>)

a second rule results from exchanging x and (− x):

(+ <1 . . .> (− x) <2 . . .> x <3 . . .>)→ (+ <1 . . .> <2 . . .> <3 . . .>)

2. All arguments with certain properties have to be chosen from the argument list of a
commutative functor.

Example 2.5 Consider a rule that finds the common denominator of a sum of frac-
tions. E.g. the following transformation should be possible:

1

a · b +
1

c · a → c · 1

a · b · c + b · 1

a · b · c
Then it is necessary to extract all common factors of two denominators no matter in
which order they appear.

In the following we do not consider the case (1) any more since it can be solved by additional
rules without extending the rule syntax any further. To handle case (2) two new notations
representing patterns that may occur on the left hand side of a rule are introduced:

• For a function symbol f we write <comm f >, if f represents a commutative function
and the commutativity should be utilized for the current rule.

• Inside of the argument list of a commutative functor the pattern < choose < xxx >>
(where < xxx > stands for < i . . . >, < aj . . . ej > or < t(aj) . . . t(ej) >) represents the
choice of a maximal subset with certain restrictions.

Example 2.6 Consider the following rule generating a common denominator of two
fractions:

(+ (/ (<comm ∗> <choose <1 . . .>> <2 . . .>))

(/ (<comm ∗> <choose <1 . . .>> <3 . . .>)))

→ (+ (∗ <3 . . .> (/ (∗ <1 . . .> <2 . . .> <3 . . .>)))

(∗ <2 . . .> (/ (∗ <1 . . .> <2 . . .> <3 . . .>))))1

By the two occurrences of <1 . . .> in the two different choose patterns we express that
only the common elements of these argument lists should be collected. The remaining
elements of the lists are put into <2 . . .> or <3 . . .> respectively.

1There is a further construct necessary to guarantee termination of this rule. It is introduced in Subsec.
2.3.

6

The possible choose conditions on the elements unifiable with the choose list are the
occurrences in several argument lists as in Ex. 2.6 and matching a certain pattern t(x)
in the case of < choose < t(a1) . . . t(e1) >>.

The use of the commutative choice as described above is restricted as follows:

• The first argument of an operator defined by < comm . . . > must be a choose-list
<choose <xxx>>.

• Besides exactly one choose list a commutative operator contains at most one more
(maybe extended) construct. Without a second construct, unification with a term is
only possible if all arguments fit into the choose list. If a second “absorption”-construct
exists, it must be unifiable with the remaining arguments not caught by the choose list.

• If an argument list of variable arity appears in the position of the choose list inside a
commutativity construct, every appearance of this list at the left hand side of the rule
must take place at the choose list position inside a commutativity construct and all
occurrences must be of the same form (<i . . .>, <ai . . . ei > or <t(ai) . . . t(ai)> with
identical t(x)).

• A commutative operator cannot appear inside an extended construct from Sec. 2.1, i.e.
with

t(x) := (< comm ∗ > < choose <2 . . .>> x)

the following left hand side of a rule is not valid:

(+ <1 . . .> < t(a3) . . . t(e3) > <4 . . .>)→ . . .

The use of the commutative choice is demonstrated by the following example:

Example 2.7 Consider the rule in Ex. 2.6 and the term (+ (/ (∗ x z)) (/ (∗ y z)). The rule
is applicable with the substitution σ := {< 1 . . . >← [z], < 2 . . . >← [x], < 3 . . . >← [y]}. The
result of this rewriting step is the term

(+ (∗ y (/ (∗ z x y))) (∗ x (/ (∗ z x y))))

Calculating a matcher between a term and the left hand side of a rule containing commutative
choice is possible as follows:

• For all lists that have to match with a commutative construct, the arguments are sorted
according to a fixed total order on ground terms providing efficient tests for <, >, =.

7

• All lists, which define the same choose-list, are processed together. During a linear
sweep, all common elements matching the given pattern, are collected.

Compared to ordinary term matching, the matching algorithm becomes more complex by this
extension, because the terms to be unified can no longer be processed in a linear order, but all
commutative constructs must be processed together. However, it should perform quite well
compared to other matching algorithms that can handle associativity and commutativity since
the use of associativity and commutativity with its computational overhead can be restricted
to those rules where it is really needed.

This method of handling commutativity is an extension to ordered rewriting as described e.g.
in [3]. The arguments of a binary commutative operator • can be ordered as a special case
by the following rule (providing some extra work to obtain termination by introducing a new
function symbol marking those appearances that have not been sorted yet):

(<comm •> <choose <1 . . .>>) → (• <1 . . .>)

This rule processes the commutative operator • of variable arity and especially of arity 2
correctly in the sense that terms consisting of the operator • and the same set of arguments
are transformed to terms with the arguments in the same order.

2.3 The Problem of Empty Rule Execution

The introduction of functions with variable arity causes a new problem to occur: the problem
of empty application of a rule. It occurs when an argument pattern of a function with variable
arity is instantiated with a list of certain length (usually 0 or 1) and the application of the
rule cannot prevent itself from being applicable at the same position again.

Example 2.8 Consider the rule

(∗ <(/ a1) . . . (/ e1)> <2 . . .>)→ (∗ (/ (∗ <a1 . . . e1 >)) <2 . . .>)

that takes some denominators from the beginning of the factor list of a product and combines
them to a single denominator.2 Now let us consider the term t := (∗ (/ 2) x). The rule is
applicable with substitution σ := {< (/ a1) . . . (/ e1) >← [(/ 2)], < 2 . . . >← [x]}. A single
reduction step on t yields t′ := (∗ (/ (∗ 2)) x). The problem here is not the product containing
just one factor, because that can be corrected easily by the rule

(∗ x)→ x

2One would normally use the commutative choice to select all denominators, but this is suppressed here
for simplification.

8

The problem rather is the fact that the rule is applicable again on t′ with σ′ := {< (/ a1) . . .
(/ e1)>← [(/ (∗ 2))], <2 . . .>← [x]} and that this kind of reduction could go on forever.

Applications of this kind are avoidable, if certain constructs of variable arity are not allowed
to be instantiated with a list of certain length. For this purpose we introduce the pattern

<< [notarity (v1 n1) . . . (vk nk)]>>

where the vi are list indices that must occur in the rule the construct is used for and the ni

are non-negative integers. Such a construct can be added to the end of the left hand side of
a rule. It prevents the rule from being applied with a substitution that assigns to every list
with list index j ∈ {v1, . . . , vk} (i.e. <j . . .>, <aj . . . ej > or <t(aj) . . . t(ej)>) an argument
list of length ni.

If one pattern of variable arity should block the rule execution for several arities these con-
straints have to be expressed with several instances of the notarity pattern.

Example 2.9 To get termination for the rule in Ex. 2.8, one must modify it to make sure
that at least two fractions are combined. Thus, we have to exclude the arities 0 and 1 for the
list <1 . . .>:

(∗ <(/ a1) . . . (/ e1)> <2 . . .>) << [notarity (1 0)]>>

<< [notarity (1 1)]>> → (∗ (/ (∗ <a1 . . . e1 >)) <2 . . .>)

An implementation of this kind of restriction is easy, because it is sufficient to check a gen-
erated substitution after unifying the left hand side of the rule and the term. This check can
be added to the end of the unification algorithm.

3 The Relation Between Normal and Extended Term

Rewriting

In this section we describe the meaning of the different syntactic constructs defined before
from a different point of view. It is a central observation in this context that most of the new
constructs yield rules which represent sets of rules not using the syntactical extensions. Thus,
it is possible to define some function ϕ, mapping every trs T employing the extended syntax
to a (usually infinite) trs T ′ := ϕ(T) consisting of rules in standard syntax.

The definition of ϕ is first motivated by a set of examples explaining for every extended
construct how it can be represented by standard rules.

9

We will start with a simplification of addition as a typical application for < i . . . >. The
simplification is given by the rule

(+ <1 . . .> x <2 . . .> (− x) <3 . . .>)→ (+ <1 . . .> <2 . . .> <3 . . .>)

This rule represents the following infinite set of simple rules:

(+ x (− x))→ (+)3

(+ u1 x (− x))→ (+ u1)

(+ x u1 (− x))→ (+ u1)

(+ x (− x) u1)→ (+ u1)

(+ u1 u2 x (− x))→ (+ u1 u2)

(+ u1 x u2 (− x))→ (+ u1 u2)

(+ u1 x (− x) u2)→ (+ u1 u2)

(+ x u1 u2 (− x))→ (+ u1 u2)

(+ x u1 (− x) u2)→ (+ u1 u2)

(+ x (− x) u1 u2)→ (+ u1 u2)

...

Lists like < ai . . . ei > are used e.g. for expressing distributivity. The following rule gives a
simplified sketch of the principle:

(∗ x (+ <a1 . . . e1 >))→ (+ <(∗ x a1) . . . (∗ x e1)>)

It represents the following infinite set of simple rules:

(∗ x (+))→ (+)

(∗ x (+ u1))→ (+ (∗ x u1))

(∗ x (+ u1 u2))→ (+ (∗ x u1) (∗ x u2))

(∗ x (+ u1 u2 u3))→ (+ (∗ x u1) (∗ x u2) (∗ x u3))

...

As the next example, we show the combination of the product of several fractions to one
fraction. We introduce the needed constructs step by step. We start with a rule, which uses
a construct of the form <t(a1) . . . t(e1)>, in this case t(x) = (/ x):

(∗ <(/ a1) . . . (/ e1)> <2 . . .>)→ (∗ (/ (∗ <a1 . . . e1 >)) <2 . . .>)
3This kind of degenerated function application is typical for rules with argument lists of variable arity.

They are easily resolvable by further rules, e.g. (+)→ 0

10

This rule represents the following set of standard rules:

(∗) → (∗ (/)) ?
(∗ (/ u1)) → (∗ (/ (∗ u1))) ?

(∗ v1) → (∗ (/) v1) ?
(∗ (/ u1) (/ u2)) → (∗ (/ (∗ u1 u2)))

(∗ (/ u1) v1) → (∗ (/ (∗ u1)) v1) ?
(∗ v1 v2) → (∗ (/) v1 v2) ?

(∗ (/ u1) (/ u2) (/ u3)) → (∗ (/ (∗ u1 u2 u3)))
(∗ (/ u1) (/ u2) v1) → (∗ (/ (∗ u1 u2)) v1)

(∗ (/ u1) v1 v2) → (∗ (/ (∗ u1)) v1 v2) ?
(∗ v1 v2 v3) → (∗ (/) v1 v2 v3) ?

...

This set contains rules working on none or exactly one fraction. In the rule set above, such
rules are marked with ?. These rules provide no functionality, but violate the termination
property of the trs. To solve this problem, we delete these rules by blocking the arities 0 and
1 for the list with list index 1:

(∗ <(/ a1) . . . (/ e1)> <2 . . .>) << [notarity (1 0)]>>

<< [notarity (1 1)]>> → (∗ (/ (∗ <a1 . . . e1 >)) <2 . . .>)

After this change, the set of represented rules just contains those rules that work on at least
two fractions:

(∗ (/ u1) (/ u2))→ (∗ (/ (∗ u1 u2))) (1)

(∗ (/ u1) (/ u2) (/ u3))→ (∗ (/ (∗ u1 u2 u3))) (2)

(∗ (/ u1) (/ u2) v1)→ (∗ (/ (∗ u1 u2)) v1) (3)

(∗ (/ u1) (/ u2) (/ u3) (/ u4))→ (∗ (/ (∗ u1 u2 u3 u4))) (4)

(∗ (/ u1) (/ u2) (/ u3) v1)→ (∗ (/ (∗ u1 u2 u3)) v1) (5)

(∗ (/ u1) (/ u2) v1 v2)→ (∗ (/ (∗ u1 u2)) v1 v2) (6)
...

Now there is one more problem to cope with: Fractions occurring behind at least one non-
fraction factor are not processed by this rule. This problem can be handled by exploiting the
commutativity of ∗:

(<comm ∗> <choose <(/ a1) . . . (/ e1)>> <2 . . .>)

<< [notarity (1 0)]>> << [notarity (1 1)]>>

→ (∗ (/ (∗ <a1 . . . e1 >)) <2 . . .>)

11

By this change, the set of represented rules is extended and now contains every permutation
of arguments. For instance, for the two rules (1) and (2) in the previous rule set we get now
the extended set:

(∗ (/ u1) (/ u2))→ (∗ (/ (∗ u1 u2)))

(∗ (/ u2) (/ u1))→ (∗ (/ (∗ u1 u2)))

(∗ (/ u1) (/ u2) v1)→ (∗ (/ (∗ u1 u2)) v1)

(∗ (/ u2) (/ u1) v1)→ (∗ (/ (∗ u1 u2)) v1)

(∗ (/ u1) v1 (/ u2))→ (∗ (/ (∗ u1 u2)) v1)

(∗ (/ u2) v1 (/ u1))→ (∗ (/ (∗ u1 u2)) v1)

(∗ v1 (/ u1) (/ u2))→ (∗ (/ (∗ u1 u2)) v1)

(∗ v1 (/ u2) (/ u1))→ (∗ (/ (∗ u1 u2)) v1)

The other rules of the previous set are extended by their permutations in the same manner,
yielding a complete solution for the problem of combining several denominators.

The applicability of every rule is implicitly restricted by the following conditions:

• Non of the vi fits the pattern (/ t). Those terms are reserved for the unification with
the (/ ui).

• The rule only applies if the terms bound to ui or vi, respectively, are ordered according
to an arbitrary fixed order on the set of terms. (This is not typical for term rewriting
systems, since the applicability of a rule depends on the right hand side of it, but the re-
striction only exists in the explanation given for the example, not in the implementation
by sorting the argument terms.)

Now we can define ϕ as follows:

Definition 3.1 For a given extended rule R the set ϕ(R) is defined by the following algorithm:

1. Every extended list < i . . . >, < ai . . . ei > or < t(ai) . . . t(ei) > in a rule Ri is (one by
one) eliminated by generating an infinite set of rules Ri

k containing k ∈ N variables
instead of the extended list i.

2. Delete those rules from the list generated in (1) that violate one of the notarity con-
straints.

3. If R contains constructs for commutative choice these are transformed construct by
construct and rule by rule as follows: For a given rule Ri and a certain commutative
operator f generate rules containing all permutations of the argument list of f .

12

For the definition of ϕ we assume the existence of a fair enumeration of the generated rules.

The function ϕ can be extended to a function on rule sets by

ϕ(T) := {S | R ∈ T ∧ S = ϕ(R)} .

For the function ϕ the following lemma hold:

Lemma 3.2 Let T be a trs containing the extended syntax and let T ′ := ϕ(T) be the standard
trs represented by T . If →T and →T ′ are the one step reduction relations of T and T ′,
respectively, we have

t→T t′ ⇐⇒ t→T ′ t′ .

Proof: The lemma follows directly from the fact that the transformation algorithm from
Def. 3.1 does not change the set of possible reductions. 2

Lemma 3.2 directly carries over to the transitive closures →+ and reflexive transitive closures
→∗

4 Effect of the Syntactical Extensions on Confluence

and Termination

Termination and confluence are the two main properties of term rewriting systems. This
section describes how the checks for termination and confluence can be performed for term
rewriting systems using the extensions described before.

4.1 Termination

The following corollary from Lemma 3.2 states that for checking some extended trs T for
termination it is sufficient to check ϕ(T) instead.

Corollary 4.1 Let T be an extended trs. T is terminating iff ϕ(T) is terminating.

Proof: By Lemma 3.2 every reduction sequence that is possible in one of the trs is also
possible in the other. Therefore, if there is an infinite sequence in T this sequence can also be
found in ϕ(T) and vice versa. Thus, non-termination of T and ϕ(T) are equivalent. Hence
termination is also equivalent for T and ϕ(T). 2

13

T ′ := ϕ(T) is usually infinite for a given extended trs T . The following lemma states that it
suffices to check a finite subset T ′′ of T ′ for termination.

Lemma 4.2 For a given extended rule R let m be the number of different variables and n
the number of different extended lists in R. Let q be the maximal number of occurrences of
the same variable or extended list on the left hand side of R. For every extended list with list
index j let gj be the maximal arity for list j which can block the application of R (gj = 0 if
no notarity constraint on list j is given) and let minj := max{2, gj}.
If all rules in the rule set T ′

R ⊂ TR := ϕ(R) with maximal functor arity S1 = q · (m +∑n
k=1 mink) are proved terminating by a termination order � then � is also a termination

order for TR.

Proof: The definition of S1 guarantees that an arity of S1 is sufficient to assign a value to
every variable and more than the maximal blocking arity to every extended list (or 2 values
if no blocking constraint to the list is given). Enlarging the arity any further just brings
more elements into an extended list. But since these elements are transformed according to
a common pattern, this cannot violate the termination property any more. 2

One should note that the standard rules represented by a rule containing the commutative
choice need not to be checked for assignments for which they are not applicable due to order
restrictions. If we restrict ourselves to termination orders not depending on the order of the
arguments this does not cause any problems. Since termination orders depending on the
argument order do not seem to make much sense in the context of commutativity this is not
a heavy restriction.

4.2 Local Confluence

As before in the case of termination we first prove that (local) confluence of an extended trs
T is equivalent to (local) confluence of ϕ(T).

Corollary 4.3 Let T be an extended trs. Then T is (locally) confluent iff ϕ(T) is (locally)
confluent.

Proof: By Lemma 3.2 we have for any terms s and s′:

s→T s′ ⇐⇒ s→ϕ(T) s′

s→∗
T s′ ⇐⇒ s→∗

ϕ(T) s′

14

Taking several instances of these two properties we get:

((t→T t1) ∧ (t→T t2))⇒ (∃t′ : (t1 →∗
T t′) ∧ (t2 →∗

T t′))⇐⇒
((t→ϕ(T) t1) ∧ (t→ϕ(T) t2))⇒ (∃t′ : (t1 →∗

ϕ(T) t′) ∧ (t2 →∗
ϕ(T) t′))

and

((t→∗
T t1) ∧ (t→∗

T t2))⇒ (∃t′ : (t1 →∗
T t′) ∧ (t2 →∗

T t′))⇐⇒
((t→∗

ϕ(T) t1) ∧ (t→∗
ϕ(T) t2))⇒ (∃t′ : (t1 →∗

ϕ(T) t′) ∧ (t2 →∗
ϕ(T) t′))

2

As for the termination test, for the test of local confluence we can also restrict ourselves to a
finite subset of ϕ(T).

Lemma 4.4 Let T be an extended trs with rules R1 and R2, m1, m2 the number of different
variables in R1 and R2, respectively, n1, n2 the number of extended lists and q1 and q2 the
maximal number of occurrences of a variable or extended list on the left hand side of the rule
Ri, respectively. For every extended list with list index j in rule i let gi,j be the maximal arity
for which list j can block Ri. (gi,j = 0 if Ri does not contain a notarity constraint on list j.)
mini,j := max{2, gi,j}.
If some rules in T ′ := ϕ(T) represented by R1 and R2 yield a critical pair violating local
confluence then there exist rules represented by R1 and R2 with this property in the finite subset
T ′′ ⊂ T ′ just containing functors of arity ≤ S2 := q1·q2·(m1+

∑n1

k=1 min1,k+m2+
∑n2

k=1 min2,k).

The idea in this lemma is similar to that in Lemma 4.2. The definition of S2 is more compli-
cated than that of S1 above. An element can play a certain role in both of the rules (a role
means being assigned to a certain variable or a certain extended list) and we must make sure
that for any given pair of roles in R1, R2 there is an argument that can play those rules.

Proof: What we need is a maximal arity that fulfills the following properties:

1. The arity chosen is large enough to exceed the maximal arity of the list number i that
blocks R2 for every i at the same time where every extended list can get at least 2
elements.

2. There are enough further elements to exceed the blocking arity of every extended con-
struct of R1 at the same time as well. These further elements can be spread over the
extended constructs of R2 arbitrarily. Especially, they can be all assigned to the same
construct.

15

According to its definition S2 meets these conditions:

1. The subterm m2 covers one occurrence of every variable in R2 and the sum
∑p2

k=1 min2k

covers one occurrence of every extended construct. The factor q2 makes sure that even
multiple occurrences of the same variable or construct can be saturated.

2. Analogously the term q1 · (m1 +
∑p1

k=1 min1k
) saturates all variables and extended con-

structs of R1. The additional factor q2 assures that this minimal number of arguments
to R1 can be assigned to any of the extended constructs of R2, no matter how often this
construct occurs.

By the symmetric definition of S2 this also holds after exchanging R1 and R2.

If we now increase the maximal functor arity any more we just add further elements that are
processed in the same manner as at least 2 already existing elements. Therefore they cannot
violate the property of local confluence if it was not violated before. 2

Note that we chose the maximal function arity in T ′′ only depending on the left hand sides
of the rules. Since the functor arity of a term can increase during normalization we have to
use the whole trs T ′ = ϕ(T) for normalizing critical pairs.

This normalization can easily be done since it is always sufficient to use only a finite subset of
rules from T ′. The arity needed to normalize a given term can be extracted from that term,
and for every arity there are only finitely many rules which can be generated on the fly.

A special handling of the result is necessary, if R1 and R2 are represented by the same extended
rule containing the commutative choice. In that case we usually get normal forms that are
not (syntactically) equivalent, but equivalent modulo permutation of variables that represent
elements of the same extended list (choice list or absorption list). This does not cause a
violation of the local confluence.

Example 4.5 Consider the extended rule

(< comm ∗ > < choose < (/ a1) . . . (/ e1) >> <2 . . .>)
→ (∗ (/ (∗ < a1 . . . e1 >)) <2 . . .>)

It represents among others the following rules:

(∗ (/ x1) y1 (/ x2)) → (∗ (/ (∗ x1 x2)) y1)
(∗ (/ x2) y1 (/ x1)) → (∗ (/ (∗ x1 x2)) y1) .

These two rules yield the critical pair (after renaming of variables)

(∗ (/ (∗ u1 u2)) v) = (∗ (/ (∗ u2 u1)) v) .

16

Both terms are already in normal form. They are not (syntactically) equal, but equal modulo
permutation of the ui corresponding to the choose list.

The statements of this section are summarized in the following theorem:

Theorem 4.6 To check an extended trs T for termination and local confluence it is sufficient
to check a finite subset of T ′ = ϕ(T).

4.3 Relation to Knuth-Bendix Completion.

It is important to note that the techniques shown above are usable for checking the local
confluence of a term rewriting system T containing the extended constructs introduced in
this paper. On the other hand it seems quite hard to find a completion procedure in the sense
of the Knuth-Bendix algorithm [6] that works directly on T (rather than on ϕ(T)) because
one would have to find common patterns in new rules that form a new extended rule. Thus,
it is an open question, whether the original completion algorithm can be extended to handle
term rewriting systems using the constructs presented in this paper directly.

5 Conclusion and Future Work

In this paper we have addressed the idea of using term rewriting systems in a programming
related style. By the extension of the rule syntax presented here we have overcome the problem
that associativity and commutativity are usually handled by separating equations for these
theories from the rule set. Our approach has the benefit of allowing to express the use of
associativity and commutativity in the rules explicitly.

A prototype of a term rewriting interpreter for these extended constructs has been imple-
mented in the LISP dialect Scheme from which we adopted the syntax of functions with
variable arity. The implementation details can be found in [2]. The usefulness of the new syn-
tax has been proven in applications of performing local normalizations on Scheme programs
[9] and the normalization of type terms for a type inference system [8].

From the theoretical point of view we have shown that termination and confluence of trs
employing the new extensions can be checked by reducing it to finite trs in standard syntax.
From experiences with checking these properties on several trs we expect that it may be
possible to perform these checks directly on a subset of the extended syntax. Discovering this
as well as tools for extending the Knuth-Bendix completion algorithm [6] are left for future
work.

17

References

[1] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, pages 245–320. Elsevier Science Publishers B.V., 1990.

[2] Dieter Froning. Lokale Normalisierung von Scheme-Programmen. Diplomarbeit, FernUni-
versität Hagen, April 1998.

[3] J. P. Jouannaud. Rewrite proofs and computations. International Summer School Markto-
berdorf “Logic of computation”, Institut für Informatik, Technische Universität München,
1995.

[4] Jean-Pierre Jouannaud and Hélène Kirchner. Completion of a set of rules modulo a set
of equations. SIAM Journal on Computing, 15(4):1155–1194, November 1986.

[5] Deepak Kapur and G. Sivakumar. A total, ground path ordering for proving termination
of ac-rewrite systems. In Hubert Comon, editor, Proceedings of the 8th International
Conference on Rewriting Techniques and Applications (RTA-97), LNCS 1232, pages 142–
156, 1997.

[6] Donald E. Knuth and Peter B. Bendix. Simple word problems in universal algebras. In
John Leech, editor, Computational Problems in Abstract Algebra, pages 263–297, 1967.

[7] Gerald E. Peterson and Mark E. Stickel. Complete sets of reductions for some equational
theories. Journal of the ACM, 28(2):233–264, April 1981.

[8] Manfred Widera and Christoph Beierle. A complete type system for functional languages.
Informatik Berichte 240, FernUniversität Hagen, September 1998.

[9] Manfred Widera and Christoph Beierle. Local normalization of functional programs. In-
formatik Berichte 248, FernUniversität Hagen, January 1999.

18

