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Abstract. We discuss the properties of strictly typed languages on the
one hand and soft typing of the other and identify disadvantages of these
approaches to type checking in the context of powerful type languages.
To overcome the problems we develop an approach that combines ideas of
strict and soft typing. This approach is based on the concept of complete
typing that is guaranteed to accept every well-typed program. The main
component of a complete type checker is defined.

1 Introduction

Types are a component of many higher programming languages following differ-
ent programming paradigms, e.g. C [8], C++ [11], Standard ML [13] and Haskell
[6]. In functional programming there are two commonly used approaches to type
checking:

– In dynamically typed languages like, e.g. Scheme [7] every data object carries
a type tag that is used for type checking at runtime.

– Statically typed languages like ML and Haskell use type inference for type
checking at compile time. These languages reject every program that cannot
be proven to be well-typed.

Types normally express sets of values with common properties. Early languages
focussed on system dependent common properties, e.g. a common internal rep-
resentation with a fixed size. Recent functional programming languages on the
other hand focus on the programmer’s view of types and allow to define new
types that have common properties from the programmer’s point of view (e.g.
Standard ML [13] or Haskell [6]). A very exact and powerful type language could
be helpful to the programmer in detecting errors, but unfortunately too powerful
type languages can cause problems for sound type systems. They tend to force
a type checker to reject too many programs that should indeed be accepted.

A further approach in dynamically typed languages, called soft typing (see
e.g. [3]), employs static type checking in order to identify function calls that
need a runtime check because they might be ill-typed. Runtime checks for calls
that can be statically proven to be well-typed can be dropped. In contrast to
statically typed languages soft typing has the disadvantage that it does not reject
any programs. If the programmer ignores the type warnings this may result in
runtime errors. Furthermore, for every warning the programmer has to decide
whether the warning results from a type error or from a weakness of the type
checker.



In this paper we propose an approach to type checking that tries to avoid
these weaknesses of both sound, but too strict and soft typing approaches in the
context of powerful type languages. We introduce the concept of complete type
checking that is guaranteed to accept every well-typed program. It also extends
soft typing by rejecting programs that cannot be executed properly without
generating a runtime error. Our type checking and inferencing method supports
powerful type languages including subtyping and is applicable to dynamically
typed languages like Scheme.

The paper is organized as follows: In Sec. 2 we give a motivation for complete
type checking and explain the benefits of combining complete typing with soft
typing. Section 3 defines the main component of a complete type checker and
summarizes its main properties. Section 4 gives a summary of related work.
Section 5 contains some conclusions.

2 The Use of Complete Type Checking

2.1 Disadvantages of Sound Type Checking

The usual approach to type checking is sound type checking that is used either
in strongly typed languages or as a soft type checker in dynamically typed lan-
guages. Soundness of a type checker means that it accepts just programs that
cannot generate a runtime type error. In other words sound type checkers follow
Milner’s slogan [9] “Well-typed programs cannot go wrong”.

No matter in which way sound type checking is used the expressiveness of
the type language must be restricted in order not to reject too many correct
programs. Such a situation is given in Ex. 1:

Example 1. Consider the following function definition.

(define (with-div x y)
(/ x (f y)))

Suppose f is an arbitrary function with result type num and 0 is not part of
the value set of f . Suppose further that there is a sound type checker and that
the type system can express the type of all numbers excluding 0. We normally
cannot prove that f does not yield zeros for the whole set of possible inputs for
y (see e.g. [12]). Thus, we cannot prove with-div free of type errors. ut

The example shows a program that cannot go wrong, but is ill-typed with respect
to the sound type checker. This can cause the following consequences:

– In a strongly typed language we observe that programs that cannot go wrong,
but are not well-typed with respect to the type checker are rejected. By
increasing the expressive power of the type language and the exactness of
the typings for predefined functions we must expect the number of such
correct but rejected programs to increase.



– A soft typing system would have to raise a warning for a function call that is
indeed well-typed. When the number of such warnings on well-typed (with
respect to runtime type errors) calls increases the system provides less help
to the programmer to find real type errors quickly.

A further problem for soft typing is shown by the following example Ex. 2:

Example 2. Consider the following erroneous implementation of the function
reverse and its use:

1 (define (reverse l)
2 (if (null? l)
3 ’() ; reversed empty list is empty
4 (append (reverse (cdr l))
5 ; reverse rest
6 (car l))))
7 ; append first element at the end.

8 (define (generate n)
9 (if (= 0 n) ()

10 (cons n (generate (- n 1)))))

11 (define (f n)
12 (reverse (generate n)))

There is an error in the second argument (line 6) of the call to the predefined
function append (lines 4-7) because from the call to reverse in f (line 12) it can
be inferred that (car l) in line 6 is not a list in every case. But although there is
a call that must go wrong in the given context the soft typing system does not
reject the program. ut
As this example shows soft typing reacts “too soft” on real provable type errors.
Altogether, the user would have to check a lot of warnings of a soft typing system
with a powerful type language in order to detect a single type error.

2.2 Motivating the New Approach

The following properties of functional programs are needed to explain the com-
pleteness of a type checker:

Let f be a predefined function and dom(f) the set of input values f is
applicable to. A misapplication of f is a call (f a) where a 6∈ dom(f).

Let P be a functional program and e an expression in P . e (always) goes wrong
if every evaluation of e causes a misapplication of some predefined function f .1

The program P goes wrong if P contains an expression e that goes wrong.
An expression e in a program P conditionally goes wrong if an execution

path in P starting at e leads to the misapplication of a predefined function. P
conditionally goes wrong if an expression e in P conditionally goes wrong.
1 We assume the functional language to be strict and to use eager evaluation.



Example 3. In the program of Ex. 2 the call to reverse in f conditionally goes
wrong because of the execution path to append in reverse.

An example for a call that (always) goes wrong (with respect to the program
in Ex. 2) is (f 3); please note that the call (f 0) does not cause a misapplication
because the else-part in reverse containing the ill-typed append -call is never
reached. Another example for a call that goes wrong is (∗ ′a 3) because the first
argument of ∗ is not a number. ut

By completeness of a type checker we mean the following property: If a
program P does not go wrong then P is not rejected by the type checker.

A complete type checker circumvents the problem of a strongly typed lan-
guage to reject programs that cannot go wrong. On the other hand it is not
as weak as a soft typing system because the complete type checker can reject
provably ill-typed programs.

The combination of soft typing with complete typing divides the output
messages of the system into errors that cause the rejection of the program and
therefore must be corrected, and warnings that mark calls which could not be
proven to be well-typed, but are not provably wrong. This structure of output
messages has a number of further advantages for the programmer both in de-
bugging programs and in proving certain correctness statements:

In debugging a program one can start correcting the fatal errors of the pro-
gram before taking care of the type warnings (i.e., either proving type correctness
of the calls or correcting them). By getting the output messages structured into
errors and warnings the programmer is guided through the increased number of
calls that are not provably well-typed due to a more powerful type language. In
no case the program has to be changed just to satisfy the type checker.

One common argument for strongly typed languages is the fact that one gets
a partial correctness proof for every accepted program. On the one hand by the
absence of type errors the complete type checker yields such a prove automati-
cally for at least a subset of type errors. On the other hand type warnings spot
on all those calls for which a correctness prove could not be generated automat-
ically. When the programmer proves the necessary properties of these calls the
resulting prove yields stronger results than the type checker of a strongly typed
languages without restricting the expressive power of the language.

2.3 Realizing a complete type checker

This section explains the intended behaviour of a complete type checker and how
it can be achieved. It motivates the definitions given in Sec. 3.

In powerful type languages the problem of type inference is often undecidable.
When the exact type of an expression cannot be inferred the usual approach is to
infer a supertype, i.e. a type that covers all values that are of the wanted exact
type. Let τ be the type inferred for the argument of a function call, σ the expected
input type of the called function and let v denote the subtype relation. Then a
sound type checker with subtyping facility checks the call for an approximation
of the property τ v σ. The type checker will accept the program if all calls fulfill



this property and it will reject it if one call does not. However, it is possible that
only the additional values that are covered by τ but not by the exact type of the
argument cause the test τ v σ to fail and the program to be rejected (c.f. Ex. 1
with σ = num and τ the type of all numbers without 0).

For complete type checking we do not want a program to be rejected just
because of additional values in the inferred type of an argument. Since we cannot
distinguish the values of the exact type from those additionally in the inferred
type the type checker should reject only those calls that must go wrong for every
value of the inferred type. Therefore, the complete type checker tests every call
in the program for the property τ ∩ σ 6= ∅. Every call that does not fulfill this
property is caused by an expression that conditionally goes wrong. A formal def-
inition of a system that is complete with respect to the definition of conditionally
going wrong is given in Sec. 3.

3 The Definition of Complete Subtyping

In this section we define the main component of a complete type checker for a
usual higher order functional language (one can think e.g. of Scheme or Standard
ML with dynamic typing). We essentially just make use of:

– lambda abstraction.
– function application.
– the existence of tuple like data constructors like cons for pairs.
– the existence of a set D of predefined functions f with given sets D(f) of

typings where every given output type contains all values that could occur
with the corresponding input type.

The set of all values expressible in this language will be denoted by V .

Definition 1 (type language). Type expressions are given by a type language
consisting of:

1. A finite set B = {⊥,>, b1, . . . , bk} of type constants called base types.
2. A finite set C = {→,∪,∩, µ, c1, . . . , cn} of type constructors with arity ≥ 1.

Every finite term t generated from the type constants, type constructors and a set
of type variables as usual is a type expression. We call a type expression ground
if it does not contain a free (i.e. not bound by µ) type variable.
The set of all type expressions (or types for short) is denoted by T . TG ⊂ T
denotes the set of all ground type expressions.

For a simpler representation we omit the use of types with free variables
in inferred types. In the sets D(f) for f ∈ D free variables are considered all-
quantified.

Definition 2 (semantics of types). Let t ∈ TG be a ground type expression
and let V denote the set of all values expressible in the current functional lan-
guage. Every type t ∈ TG represents a set of values V (t) ⊆ V:



– ⊥ is the empty type just containing the value ⊥ expressing non-termination.
– > is the type representing the set of all values.
– The base types b1, . . . , bk represent sets of simple values with the following

property: If b, b′ ∈ B, V (b) ∩ V (b′) 6= ∅ then there exists some b̃ ∈ B with
V (b̃) = V (b) ∩ V (b′).

– A → B contains all functions that map all values a ∈ V (A) to values b ∈
V (B).

– Types defined by ∪ and ∩ contain the union resp. intersection of the values
of the element types.

– µX.t with t containing X as free variable defines a recursive type as the least
fixed points of the equation V (t′) = V (t[X ← t′]).2

– In general c1, . . . , cn are free type constructors and correspond to tuple like
data constructors. E.g. the type (Tcons A B) represents the value set

{(cons a b) | a : A, b : B} .

For v ∈ V (t) we also write v : t.

Definition 3 (type hierarchy). The subset relation ⊆ on the power set of V
introduces a type hierarchy on the set TG of all ground types with the subtype
relation vR by the following definition:

t1 vR t2 ⇐⇒ V (t1) ⊆ V (t2) .

Though there are subtyping procedures for quite powerful type languages
(see e.g. [4]) we are going to use approximations of the type hierarchy defined
in Def. 3 with certain properties. By this we do not rely on type languages for
which an algorithm deciding the semantic subtype relation exists.

Definition 4 (compatible subtype relation). A subtype relation v is com-
patible to another subtype relation v′ if the following condition holds:

t1 v t2 =⇒ t1 v′ t2

v is called compatible if it is compatible to vR. In the following we use the notion
t1 @ t2 for t1 v t2 ∧ t2 6v t1.

The idea of complete type checking applies in particular to calls of predefined
functions. When a function f ∈ D is applied to an expression e where the most
special type of e and no input type of f have common elements then a conditional
type error (i.e. the misapplied call to a predefined function corresponding to an
expression that conditionally goes wrong) is detected. Otherwise we select all
input types of f that are most special and have a maximal number of common
elements with e. We type the call (f e) with the union of the corresponding
output types. This is formalized in the following definitions.

2 t[X ← t′] expresses the type t with every occurence of the variable X replaced by t′.



Definition 5 (partial parameter dependent output types). Let A be a
set of type assumptions (i.e. a set of type assignments and subtype conditions on
type variables), f ∈ D a predefined function, D(f) the set of all given typings of
f and e a value expression. A type σ is a partial parameter dependent output type
(ppo) of f with respect to e and A (written σ ∈ PPO(A, f, e)) if the following
properties hold:

1. A ` e : τ ′.3

2. For every τ̃ ′ with A ` e : τ̃ ′ we have τ̃ ′ 6@ τ ′.
3. τ → σ ∈[D(f) where[D(f) is the set of all ground instances of types in D(f).
4. EI(τ, τ ′) is false where EI approximates the test for empty intersection of

two types with the following property:

EI(ρ, ρ′) =⇒ ρ ∩ ρ′ = ⊥ .

5. If τ̃ → σ̃ ∈[D(f) is a typing of f then the following holds:
(a) τ ∩ τ ′ 6@ τ̃ ∩ τ ′.
(b) τ ∩ τ ′ = τ̃ ∩ τ ′ =⇒ τ̃ 6@ τ .

Remark 1. Informally, for the most special type τ ′ of e (1),(2) Def. 5 chooses the
most special input type τ of f (3), (5b) that causes the least possible restriction
of the intersection τ ∩ τ ′ (5a). The calculation fails in the case of an empty
intersection τ ∩ τ ′ (4). The resulting partial parameter dependent output type
is the output type of f corresponding to the chosen input type.

Note that (4) formalizes the test whether f is applicable to e. The other
conditions are needed to get exact result types.

Though we have defined PPO(A, f, e) just for unary function symbols f
the definition is easy to extend by introducing tuples via a type constructor ×
defined by V (A × B) := V (A) × V (B) and a corresponding data constructor
(·, ·). This is shown in Ex. 4.

Example 4. Consider a function application (+ x y) and a set D(+) of typings
for +:

nat× nat→ nat ∈ D(+) (1)
int× int→ int ∈ D(+) (2)
num× num→ num ∈ D(+) (3)

string× string→ string ∈ D(+) (4)

(1), (2) and (3) denote the sum of naturals, integers and arbitrary numbers,
respectively, with nat v int v num and (4) denotes the concatenation of strings.

Suppose furthermore that the most special type with respect to A is nat for
x and int for y. Then for calculating PPO(A, +, (x, y)) we have:

– τ ′ := nat× int.
– The intersection τ ∩ τ ′ is most general for τ ∈ {int× int, num× num}.
– Because of int× int v num× num we have τ := int× int.

3 The notion A ` e : ρ is defined in Fig. 1.



A ∪ {x : τ} ` x : τ
(Var)

A ` e : τ

A ` e : τ ′ τ v τ ′ (Sub)

A ∪ {x : τ ′} ` e : τ

A ` λx.e : τ ′ → τ
(Abs)

A ` e : τ ′, A ` f = λx.e′ : τ ′ → τ

A ` (f e) : τ
(App-Lambda)

A ` e : τ ′

A ` (f e) : τ

f ∈ D
τ := PO(A, f, e) 6= ⊥ (App-Pre)

Fig. 1. Type inference rules for a simple complete type checker CC

– The resulting unique ppo is int.

If the most special types of x and y are nat ∪ string and int ∪ string,
respectively, we get τ ′ := (nat ∪ string) × (int ∪ string) and for τ we get
int× int and string× string. Thus, we have the two ppos int and string.

If we have the types nat and string for x and y, respectively, then τ ′ :=
nat × string, but the definition of τ fails since there is no input type τ of +
with ¬EI(τ, τ ′). (Note that t×⊥ = ⊥× t = ⊥.) ut

As Ex. 4 shows there can be none, one or several ppos. For no ppo a type
error has been detected. In the case of several ppos the function application has
to be typed with the union of them. This motivates the following definition:

Definition 6 (parameter dependent output type). Let A, e and f be as
in Def. 5. The parameter dependent output type of f with respect to e and A is
defined as

PO(A, f, e) :=
{⋃

σ∈PPO(A,f,e) σ if PPO(A, f, e) 6= ∅
⊥ else .

With a compatible subtype relation v a simple complete (with respect to
programs that conditionally go wrong) type checker is given by Fig. 1. The
new idea of completeness can be found in the typing rule (App-Pre) for calls
to predefined functions. The idea is to report exactly those calls for which the
inferred argument type contains no values the function is applicable to.

The type checker presented in Fig. 1 is a basic one. Further inference rules
e.g. for typing let or conditional types as presented in [1] should be easy to adapt.

Theorem 1 (completeness of type checking). Let CC be a type checker
based on the typing rules of Fig. 1 with a compatible subtype relation v. When
CC only reports those calls a = (f e) with f ∈ D that cannot be typed according
to (App-Pre) because PO(A, f, e) = ⊥ then CC reports only calls in programs
that conditionally go wrong.

Example 5. Consider the program from Ex. 2. Typing the function f causes
the typing of reverse with the input type l ← (list num), which in turn causes a
message to be generated for append. (From the control flow information available
during type inference the system can identify the call (reverse (generate n)) in f
as conditionally going wrong with the execution path to append. The condition
for this path to be executed is (not (null? (generate n))).) ut



One should note that the system described here does not (yet) return error
messages. This is the case because of the following two reasons:

– An expression that goes wrong need not be executed in a program. E.g. in
Ex. 2 the function f may never be called.

– An expression that is reported by our system can still be executable without
a runtime error if the control reached the expression on a different path. If e.g.
the program in Ex. 2 contains a call (reverse ′((1) (2) (3))) the expression
(append . . .) will not generate a misapplication of append for this call.

As a result we cannot be sure whether a detected problem in the program will
really cause an error. But to every reported call a we can additionally compute
the corresponding call a′ that conditionally goes wrong (i.e. the entry point of a
path that causes a runtime error) and the error condition (i.e. the conjunction
of all conditions an argument to a′ must fulfill to result in a call to a). This
information can be used by a further stage of the type checker to determine
whether the program must be rejected. This is the case if a call (always) goes
wrong, i.e. its error condition is always fulfilled. Further reasons for rejecting a
program can be error conditions that are always fulfilled except of special cases
like empty lists (like in Ex. 5). The motto behind this would be the idea that
one is not interested in functions that go wrong in all cases except for special
cases like the empty list.

4 Related Work

This work uses the idea of type inference with subtyping [2], [10]. As we have
shown in Ex. 1 undecidable problems prevent strongly typed languages with too
powerful type hierarchies from being useful.

The idea of soft typing as presented in [3] can help to establish subtyping with
a powerful type hierarchy. Besides reducing the number of runtime type checks
as described in [15] soft typing allows to build tools that generate warnings to
spot on potentially erroneous program parts. An example of set based analysis
with output very similar to soft typing is MrSpidey [5] working under DrScheme.

A first approach to overcome the disadvantage of soft typing not to reject any
programs is given in [14], but it depends strongly on a restricted type language.
By the work presented here it is possible to build powerful type checkers with
subtyping that benefit from both strongly typed languages and soft typing.

5 Conclusion and Future Work

In this paper we have motivated a new approach to type inference with subtyping
that puts the focus on completeness of the type checker and we have defined the
first component of such a type checker. By accepting every well-typed program
and rejecting only those programs that are provably ill-typed we can use more
powerful type languages without restricting the set of accepted programs due to



inaccuracies of the type inference system. The programmer on the other hand
gets detailed support in detecting errors. Further warnings of an additional sound
soft typing system can spot on those parts of the program that could not be
proven to be well-typed.

A further component that is needed for a complete type checker analyzes calls
that conditionally go wrong in order to prove a sufficient condition to reject the
program. Our current work includes the formal definition of conditions that make
a program unacceptable and an appropriate check for these conditions.
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