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Abstract

This article adresses parameter estimation with moment-based stochastic filters that only
heed the first two moments of the state densities. This approximation provides good
results in numerous cases. However, due to missing linear correlation between diffusion
parameters and expected states, Bayesian estimation of diffusion parameters such as
volatility is not possible. While other filters overcome this problem by simulations, we
present a deterministic algorithm for Bayesian estimation of the diffusion coefficient based
on sigma points which can be applied to all moment-based filters. To show the validity of
the algorithm we use the continuous-discrete unscented Kalman filter proposed by Singer
[18].
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1 Introduction

Nonlinear stochastic filters are powerful tools for simultaneous estimation of parameters and

unoberserved states from noisy data. They can be used for a maximum likelihood approach

for parameter estimation and provide the possibility of online Bayesian estimation by aug-

menting the state vector with the parameters. The basic idea of the most nonlinear filters

is to apply the Kalman filter to nonlinear systems. This may be extremely difficult as it re-

quires the description of the propagation of the state and parameter probability densities.

As these densities may be very complex, a finite number of parameters may not be sufficient

to describe them. Therefore, approximations have to be made, dividing the different filters

into two sections: the moment-based or Gaussian filters, which reduce the densities to their

first two moments, and filters which capture more information about the densities. Examples

for the second type are particle filters (see for example Pitt/Shephard et al. [12]) which use

simulations for the density approximations.

The first and most widely used moment-based nonlinear filter is the extended Kalman filter

(EKF), which uses a Taylor expansion of the nonlinear functions around the estimates up to

the first order. Expansions up to the second order lead to the second order nonlinear filter

(SNF). Expansions to higher orders lead to the higher order nonlinear filters (HNF). While

these classical filters need the explicitly given Jacobians of the nonlinear functions, there exist

approaches on numerical derivations. The divided difference filters (DD-i) of Nørgaard [11]

use polynomial expansions of the nonlinear functions up to the i-th order which can be solved

numerically by evaluations of these functions. Other filters, based on numerical quadrature

rules, are the Gauss-Hermite filter (GHF) based on the numerical Gauss-Hermite integra-

tion and the central-difference filter (CDF) (see Ito/Xiong [3] for both) based on polynomial

interpolation. The second one turns out to be equivalent to the DD-2 Filter (see van der

Merwe/Wan [20]).

The cited moment-based filters cited above use approximations of the nonlinear functions.
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Whereas, the unscented Kalman filter (UKF) developed by Julier/Uhlmann [6], is based on

the intuition that it is easier to approximate a probability distribution than to approximate an

arbitrary nonlinear function or transformation [7], using the unscented transform (UT) for

the approximation of the probability densities that undergo nonlinear transformation. The

specification presented by Julier/Uhlman was only formulated for the time discrete case and

with respect to the noisy terms in general, treating the noise sequences by including them into

the state vector. Recently, Singer [18] formulated a specification for the continuous-discrete

case and included the noisy terms directly with no need to extend the state vector.

One important advantage of the moment-based filters over the simulation-based filters is

the computing time needed. In general, simulation-based filters need hundreds of times the

computing power of moment-based filters due to the simulation of hundreds of trajectories.

However, moment-based filters are not able to estimate parameters of the diffusion coefficient

of the state equations such as volatility using the Bayesian approach (see for example Sitz et

al. [19]). For this reason simulation-based filters have to be used, resulting in more computing

power needed (see for example the FIF in Singer [15] or [17]). To tackle this problem, we

present a deterministic meta-algorithm in Section 4.2. It may be adapted to all moment-

based filters. Using this algorithm allows Bayesian estimation of the diffusion coefficient with

a computationally overhead of just factor three compared to the direct use of a moment-based

filter. However, if applied directly, the moment-based filter does not estimate the diffusion

coefficient. Therefore this overhead has to be compared with the use of simulation-based

filters.

The paper is organized as follows: In Section 2 the continuous-discrete state space model is

defined. The nonlinear state estimation is discussed deriving the general filter equations for

moment-based filters. In Section 3 the unscented transform and the unscented Kalman filter

according to Singer [18] are derived. In Section 4 two approaches of parameter estimation with

moment-based filters (ML und Bayesian) are discussed. We introduce an abstract notation
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and present the Bayesian meta-algorithm. In Section 5 the validity of our approach is shown

in simulation studies. We apply the algorithm in order to estimate parameters of an Ornstein-

Uhlenbeck model using the Bayesian approach. We also apply the algorithm to a stochastic

volatility model. Section 6 concludes.

2 Nonlinear Continuous Discrete State Estimation

2.1 State Space Model

The continuous-discrete state space representation (Jazwinski [4]) turns out to be very useful

in systems, in which the underlying models are continuous in time and only discrete observa-

tions are available. It consists of a continuous state equation for the state y(t) and discrete

measurements zi at times ti:

dy(t) = f(y(t), t, ψ)dt+ g(y(t), t, ψ)dW (t) (1)

zi = h(y(ti), ti) + εi. (2)

The first equation is a p-dimensional Itô differential equation with an r-dimensional Wiener

process W (t). The drift coefficient f : R
p × R × R

u −→ R
p and the diffusion coefficient

g : R
p × R × R

u −→ R
p × R

r are functions of the state, the time and a u-dimensional

parameter vector ψ.

The measurement equation (2) projects the state vector y(t) onto the time discrete k-

dimensional measurements zi. The measurement may be noisy with the k-dimensional discrete

white noise process εi ∼ N(0, R(ti, ψ)), εi, i.d. and independent of W (t).

2.2 Time and Measurement Update for Moment-Based Filters

The idea of filtering is to estimate the actual probability density of the state vector from noisy

data. For t ∈]ti, ti+1[ (no measurement information) the estimation of p(y, t|Z i) is based on
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prior information and the propagation of the density through the state equation (time-update,

a-priori density). For t = ti+1 with actual measurement information available, the a-posteriori

state density p(y, t|Z i+1) has to be estimated using the a-priori density and the measurement

information (measurement update).

Both steps can be made without approximation (Jazwinski [4]). For the time update this

means integrating the Fokker-Planck operator resulting in terms that can be solved explicitly

only for linear systems and Gaussian densities. There are numerical and Monte-Carlo based

methods that lead to approximated solutions for nonlinear systems (see for example Singer [16]

and the reviewing introduction there). Furthermore, there are moment-based filters solving

the propagation approximately only for the first two moments (expectation μ and variance

Σ) of the state densities using the moment equations (time-update):

μ̇(t) = E[f(y(t), t)|Zi] (3)

Σ̇(t) = Cov[f, y|Zi] + Cov[y, f |Zi] +E[Ω|Zi], (4)

with Ω = gg′. Since these equations depend on the conditional densities p(y, t|Z i) they have

to be solved approximately. In the EKF this approximation consists in the Taylor expansion

of f and g while the filters of Nørgaard [11] use polynomial expansions. These approximations

of the nonlinearities lead to approximated differential equations. In the UKF, however, the

density p(y, t|Zi) is approximated by the UT (see Section 3.1) using the full functions f , g.

The exact measurement update is based on Bayesian updating. Given the prior information

p(y|Zi) and the measurement information p(zi+1) the a-posteriori state density is given by

p(y|Zi+1) =
p(zi+1|y)p(y|Zi)

p(zi+1)
. (5)

Looking solely at the first two moments, implicitly assumes Gaussian densities. In these cases

the measurement update p(y|Z i+1) can be simplified using the theorem of normal correlation:
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Theorem 1 (Normal correlation)

Let X and Y be multivariate normally distributed. Then:

E[X|Y ] = μX + ΣXY Σ−
Y Y (Y − μY ) (6)

Var[X|Y ] = ΣXX − ΣXY Σ−
Y Y ΣY X , (7)

with Σ−
Y Y , pseudoinverse of ΣY Y , sufficing (Liptser/Shiryayev [8], chap. 13).

Due to the role of the covariance matrices only the states correlated with the measurement are

updated. As this does not apply for the parameters of the diffusion coefficient, they are not

updated. With p(y, t|Z i+1) = p(y, t|zi+1, Z
i) this gives an optimal estimation for the linear

case. Using subscripts i for at time ti and i+1|i for at time ti+1 based on information of ti etc.

it follows:

μi+1|i+1 = μi+1|i + Cov[yi+1, zi+1|Zi]Var[zi+1|Zi]− ×

×(zi+1 −E[zi+1|Zi]), (8)

Σi+1|i+1 = Σi+1|i − Cov[yi+1, zi+1|Zi]Var[zi+1|Zi]− ×

×Cov[zi+1, yi+1|Zi]. (9)

Taking the measurement equation (2) into account leads to (measurement update):

μi+1|i+1 = μi+1|i + Cov[yi+1, hi+1|Zi] ×

×(Var[hi+1|Zi] +Ri+1)−(zi+1 −E[hi+1|Zi]), (10)

Σi+1|i+1 = Σi+1|i − Cov[yi+1, hi+1|Zi] ×

×(Var[hi+1|Zi] +Ri+1)−Cov[hi+1, yi+1|Zi] (11)

Li+1 = p(zi+1|Zi)

= φ
(
zi+1;E[hi+1|Zi]Var[hi+1|Zi] +Ri+1

)
, (12)

where Li+1 is the likelihood function of the measurement at ti+1 with Gaussian den-

sity φ. It is based on the prediction error νi+1 := zi+1 − E[zi+1|Zi] and its covariance
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Γi+1 := Var[zi+1|Zi] = Var[hi+1|Zi] + Ri+1. As in the time update step, the expectations

and covariances have to be approximated. In the EKF, Taylor expansion of h around μi+1|i

is done, the polynomial filter of Nørgaard uses numerical expansion. In the UKF, this is done

using the unscented transform.

3 Continuous-Discrete Unscented Kalman Filter

The basic ideas and formulas of moment-based filters were proposed in the former section.

In this section we present the unscented transform to build the unscented Kalman Filter.

In contrast to the classical, more general UKF presented by Julier et al. [6] which uses an

augmentation of the state vector to include the noisy terms in the time update and calculate

the covariance Σi+1|i, we use a version for the continuos-discrete state space model presented

by Singer [18]. Therein, the UKF is implemented directly, using the time update equations

mentioned above. There is no need for augmenting the state vector with the noisy terms,

which results in fewer computing costs. Moreover, this implementation adapts directly to

continuous-discrete systems by decoupling of observation width in the measurement equation

and sampling width in the time update of the filter.

3.1 Unscented Transform (UT)

The UT is a method for calculating the transformation of the density of a random variable

which undergoes a nonlinear transformation (see Julier/Uhlmann [6]). For calculating the

moments before and after the transformation, the density p(y) of the random variable y ∈ R
p̃

is approximated by the sum

pUT (y) =
p̃∑

j=−p̃

ω(j)δ(y − y(j)), (13)

with δ the Dirac delta function, the n = 2p̃+ 1 sigma points y(j) and the weights ω(j). Often,

pUT (y) is interpreted as a singular probability density. This is not the case in the original
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framework of Julier/Uhlmann, where the weights can be negative. Furthermore the sigma

points and weights are chosen so that the first two moments of the density of y are replicated:

E[y] =
∫
yp(y)dy !=

∫
ypUT (y)dy =

n∑
j=1

ω(j)y(j)

Var[y] !=
n∑

j=1

ω(j)(y(j) −E[y])(y(j) −E[y])T .

In contrast to Monte Carlo approaches, this choice is deterministic. Julier/Uhlmann give the

following choice:

y(i) = E[y] +
(√

(p+ κ)Var[y]
)

i
, ω(i) =

1
2(p+ κ)

, i = 1..p

y(i+p) = E[y] −
(√

(p+ κ)Var[y]
)

i
, ω(i+p) =

1
2(p+ κ)

, i = 1..p

y(2p+1) = E[y], ω(2p+1) =
κ

(p+ κ)
,

where (√ ... )i is the i-th row or column of the matrix root. The real parameter κ gives an

extra degree of freedom for further fine tuning. For Gaussian densities of y Julier/Uhlmann

recommend p̃ + κ = 3, however κ = 0 works in many cases (see e.g. Julier/Uhlmann [7] or

Singer [18]) reducing the number of sigma points by one (for a detailed discussion regarding κ

see Julier/Uhlmann [6] or Julier [5]). After undergoing a nonlinear transformation y → f̃(y)

expectation, covariance of f̃(y) and cross covariance of f̃(y) and y can be computed as:

E[f̃(y)] =
n∑

j=1

ω(j)f̃(y(j))

Var[f̃(y)] =
n∑

j=1

ω(j)
(
f̃(y(j)) −E[f̃(y)]

) (
f̃(y(j)) −E[f̃(y)]

)′

Cov[f̃(y), y] =
n∑

j=1

ω(j)
(
f̃(y(j)) −E[f̃(y)]

) (
y(j) −E[y]

)′

with the outer product (...)(...)′.
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3.2 Filter Algorithm

The unscented transform can be used to evaluate the expectation, variance and covariance

terms of the filter equations. The time update is done by Euler integration using equations (3)

and (4). With regard to the time continuous nature of the state equations of the system, the

Euler scheme uses a finer discretization interval δt than the measurement intervals ti+1 − ti

dividing them into L = (ti+1 − ti)/δt parts. The time update is done at each point τl of the

resulting grid. With τ0 = ti and τL = ti+1 this is an iteration which calculates μ(l+1)|i and

Σ(l+1)|i. The expectation and covariance values are evaluated with the UT, building the sigma

points using the moments μl|i and Σl|i (here the subscripts l|i denote at time τl, based on the

information at time ti). The measurement update is made as given by the equations (10) and

(11). The covariance and expectation values are evaluated with the UT building the sigma

points using μi+1|i and Σi+1|i. The following algorithm summarizes this filter:

Algorithm 1 (Continuous-discrete unscented Kalman filter).

Initialization: t = t0

μ0|0 = μ+ Cov[y0, h0] ×

× (Var[h0] +R0)−Cov[h0, y0]

Σ0|0 = Σ − Cov[y0|h0] ×

× (Var[h0] +R0)−Cov[h0, y0]

L0 = φ(z0;E[h0],Var[h0] +R0)

Sigma points : y(j) = y(j)(μ,Σ);μ = E[y0],Σ = Var[y0].

Recursion: i = 0, ..., T − 1
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Time update: t ∈ [ti, ti+1]

τl = ti + l · δt; l = 0, ..., Li − 1 := (ti+1 − t1)/δt− 1

μl+1|i = μl|i +E[f(y(τl), τl)|Zi]δt

Σl+1|i = Σl|i + {Cov[f(y(τl), τl), y(τl)|Zi] +

+ Cov[y(τl), f(y(τl), τl)|Zi] + E[Ω(y(τl), τl)|Zi]}δt

Sigma points : y(j) = y(j)(μl|i,Σl|i)

Measurement Update

μi+1|i+1 = μi+1|i + Cov[yi+1, hi+1|Zi] ×

× (Var[hi+1|Zi] +Ri+1)−(zi+1 −E[hi+1|Zi]),

Σi+1|i+1 = Σi+1|i − Cov[yi+1, hi+1|Zi] ×

× (Var[hi+1|Zi] +Ri+1)−Cov[hi+1, yi+1|Zi]

Li+1 = φ
(
zi+1;E[hi+1|Zi]Var[hi+1|Zi] +Ri+1

)

Sigma points : y(j) = y(j)(μi+1|i,Σi+1|i)

The subscript i|i denotes at time ti based on information at time ti, whereas the subscript l|i

denotes at time τl based on information at time ti.

4 Parameter Estimation

Moment-based filters are powerful tools for the estimation of the state y(t) of the system

from of noisy data. In contrast to the classical Kalman filter, the presented UKF is capable to

handle nonlinearities in the state space model due to the approximation of the state densities

using the unscented transform. Other moment-based filters like the EKF or the DD-i filters

of Nørgaard use linearizations of the state space equations for these approximations. All

filters can be used to calculate a likelihood function regarding the state space model and the
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observations, so that parameter estimation in the sense of maximum likelihood is possible.

We use the following filter-independent notation:

[ŷ, Σ̂, L, logL] = MBF [E[y0],Var[y0], ψ,R, t, z] (14)

where MBF stands for moment-based filter. The variables are: the estimated state vector

ŷ ∈ R
p ×R

T containing the estimated p-dimensional state at T points in time, the estimated

covariance Σ̂ ∈ R
p × R

p × R
T for all T points in time, the likelihood L =

∏T
i=0 Li and the

log-likelihood logL =
∑T

i=0 log(Li). On the right side: assumed expectation E[y0] and covari-

ance matrix Var[y0] of the initial state, the parameter vector ψ, a vector R ∈ R
k × R

k(×R
T )

containing the covariance matrix of the measurement noise (possibly different for all T mea-

surements) and the time vector t = t0, ..., tT−1 for the measurements and the measurement

vector z = z0, ..., zT−1. The not focused variables are suppressed when possible.

The classical maximum (log-)likelihood (ML) approach for parameter estimation with this

notation is received as

max
ψ

{logL} = MBF [E[y0],Var[y0], ψ,R, t, z] (15)

and can be performed by numerical maximization.

4.1 Bayesian Approach

Beside the maximum likelihood approach the filters can estimate the unknown parameters by

considering them as latent state variables. The state vector is augmented by the parameter

vector (y → ỹ =
[
y
ψ

]
) with trivial dynamics (dψ = 0). This leads to the extended state space

model:

dy(t) = f(y(t), t, ψ)dt+ g(y(t), t, ψ)dW (t) (16)

dψ = 0

zi = h(y(ti), ti) + ε̃i.
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By filtering this state space model as
[
ˆ̃y, ˆ̃Σ, L

]
= MBF [ỹ0,Var[ỹ0], R, t, z] , (17)

the estimates of the parameters are updated each time new measurement information comes

in. This gives a sequential Bayesian estimator of the unknown parameters: ψ̂ = E[ψ(t)|Zt].

Note, that this approach leads to nonlinear problems even if the state space equations are

linear. For this reason, linear filters like the Kalman filter cannot be used for this approach.

Nonlinear moment-based filters like the EKF can be used for this approach but do not estimate

parameters of the diffusion coefficient g(y(t), t), such as volatility (see for example Sitz et

al. [19]). This is due to a missing linear correlation between observations and the diffusion

parameters. Equation (10) will not update the diffusion parameters with zero-entries in the

covariance. Solutions are given by superior filter designs like the functional integral filter (FIF)

(see Singer [18]) or other simulation-based filters (see Pitt/Shephard [12] for a short review

of the statistical basics of particle filters), but will be paid with high computing costs due to

numerical simulations. In the next section an algorithm for Bayesian estimation of volatility

using moment-based filters is presented.

4.2 Meta-Algorithm for Estimating Volatility

Due to the missing correlation between diffusion coefficient and the observation, the parame-

ters of the diffusion coefficient are not estimated by the moment-based filters. This is caused

by the approximation of the exact measurement update equation (5) with the theorem of nor-

mal correlation. Nevertheless, the moment-based filters provide an accurate likelihood with

respect to the value of the diffusion coefficient. Interpreting the exact equation in terms of

likelihood, it is

p(y|Zi+1) = constant · likelihood · prior, (18)

where the constant is a normalizing constant, given by p(zi+1), the sum of all likelihoods. The

idea behind it is to decouple the parameters of the diffusions coefficients from the rest and to
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update their a-priori belief via this Bayesian formula instead of in the filtering algorithms itself.

In the resulting meta-algorithm the state vector is extended by the parameter vector ψ as

in the usual Bayesian approach. However, it has to be differentiated between the parameters

of the drift coefficient (ψdrift) and the parameters of the diffusion coefficient (ψdiff ∈ R
m)

as given in equation (19). After initialization a recursion begins, in which sigma points of

the diffusion parameter vector in the sense of the unscented transform (see Section 3.1) are

formed sequentially for each measurement time ti. The likelihood for all (2m+1) sigma points

regarding the next time step is calculated using the MBF as shown in equation (20). The MBF

is initialized for only one time step with state covariance zero. Thereafter, relative weights

α(j̃) regarding the likelihoods are calculated as given by equation (21). Using these weights an

Bayesian estimator as given by (18) is of the sigma points (equation (22)) with a covariance

matrix using both the likelihood weights and the sigma point weights as given by equation

(23). The MBF is initialized with the new parameter set at the end of the recursion step for

one step to estimate the remaining states, parameters and covariances (see equation (24)).
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Algorithm 2 (Estimating diffusion coefficient with MBF).

Initialization: t = t0

ỹ0 = [y0, ψdrift;0, ψdiff;0]′ Σ̃0 = Var[ỹ0] =
(

Σ(y,drift);0 0
0 Σdiff;0

)
(19)

ψdiff ∈ R
m

Recursion: i = 0, ..., T

Sigma points : ψ(j̃)
diff;i = ψ

(j̃)
diff;i(ψdiff;i,Σdiff;i); weights: ω(j̃)

j̃ = 1, ..., (2m+ 1) : L(j̃) = MBF

⎡
⎢⎣

⎛
⎜⎝

yi

ψdrift;i

ψ
(j̃)
diff;i

⎞
⎟⎠ , 0, R, [ti, ti+1], zi+1

⎤
⎥⎦ (20)

αj̃ = L(j̃)/

⎛
⎝2m+1∑

j̃=1

L(j̃)

⎞
⎠ (21)

ψ̂diff =
2m+1∑
j̃=1

αj̃ψ
(j̃)
diff;i (22)

Σ̂diff = (2m+ 1)
2m+1∑
j̃=1

αj̃ωj̃(ψ̂diff − ψ
(j̃)
diff;i)

2 (23)

Σ̃tmp :=
(

Σ(y,drift);i 0
0 Σ̂diff

)

[
ỹi+1, Σ̃i+1, Li+1

]
= MBF

⎡
⎣

⎛
⎝ yi

ψdrift;i

ψ̂diff

⎞
⎠ , Σ̃tmp, R,

[
ti
ti+1

]′
, zi+1

⎤
⎦ (24)

ỹi+1 =: [yi+1, ψdrift;(i+1), ψdiff;(i+1)]
′

Σ̃i+1 =:
(

Σ(y,drift);(i+1) 0
0 Σdiff;(i+1)

)

5 Simulation Studies

5.1 Ornstein-Uhlenbeck Process

Mean reversion processes of the Ornstein-Uhlenbeck (O-U) type are used to model the price

behavior of different commodities which underly a long price equilibrium like oil and gas (see
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Schwartz [14]), or electricity prices (see Lucia/Schwartz [9]). Apart from commodities, interest

rates may be modelled using O-U type models as for example in the Cox/Ingersoll/Ross [1]

models. The following continuous-discrete state space model describes such a mean reversion

process with a continuous system equation and a discrete measurement equation, meaning

the prices or interest rates at certain points in time:

dy(t) = ψ1 [ψ2 − y(t)] dt+ ψ3dW (t) (25)

zi = y(ti)

with the parameter set ψ = [ψ1, ψ2, ψ3]. For simplicity, we suppress all units, the time unit is

one, which is (ti+1−ti). By augmenting the state vector y(t) as ỹ(t) = [y(t)′, ψ]′, the extended

state space model for the Bayesian estimation is received:

dỹ1 = dy = ỹ2 [ỹ3 − ỹ1(t)] dt+ ỹ4dW (t) (26)

dỹ2 = dψ1 = 0

dỹ3 = dψ2 = 0

dỹ4 = dψ3 = 0

zi = ỹ1(ti).

The data for 1000 time units is simulated using an Euler scheme on a grid of one tenth of

the measurement interval with the parameter set ψ = [ψ1, ψ2, ψ3] = [0.5, 3, 2]. The data is

then filtered using the extended state with initial parameters ψ0 = [1, 4, 10] and a diagonal

initial covariance matrix with variances of 1. Figure 1 shows the estimation results for the

parameters ψ (2. to 4. component of ỹ) using the continuous-discrete UKF (L = 10). The

parameters of the drift coefficient are estimated correctly, the confidence intervals (3 times

the standard deviation on each side) shrink with time. As expected, the diffusion coefficient

i.e. the volatility is not estimated.

Figure 2 shows the results using the meta-algorithm adapted to the continuous-discrete UKF.

Obviously the diffusion coefficient is estimated. The filter needs about 50 recursions to decrease
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ψ3 from 10 down to approximately 2. The diffusion coefficient with a higher lieklihood leads

to better results of the other parameters with faster shrinking confidence intervals than in the

UKF case.

5.2 Stochastic Volatility

We extend the former model by a time dependent diffusion coefficient in the sense of a gener-

alized Vasicek or a Hull-White [2] model. The time dependent diffusion coefficient (volatility)

is of O-U type as well. Similar approaches for extending the commodity models by stochastic

volatility of O-U type were recently used by Nielson/Schwartz [10] and Ribeiro/Hodges [13].

We assume the following state space model:

dy1(t) = ψ1 [ψ2 − y1(t)] dt+ y1(t)y2(t)dW1(t) (27)

dy2(t) = ψ3 [ψ4 − y2(t)] dt+ ψ5dW2(t)

zi = y1(ti),

with independent Wiener processes W1(t),W2(t). As above we suppress all units, the time

unit is one, which is (ti+1 − ti).

The data is simulated for 365 time units using an Euler scheme on a grid of one tenth of the

measurement interval with the parameter set ψ = [0.5, 3, 0.5, 0.2, 0.1].

We use the following extended state space model to estimate the first two parameters (ψ1, ψ2)

and the stochastic volatility y2:

dỹ1 = dy1 = ỹ2 [ỹ3(t) − ỹ1(t)] dt+ ỹ1(t)ỹ4(t)dW (t) (28)

dỹ2 = dψ1 = 0

dỹ3 = dψ2 = 0

dỹ4 = dy2 = 0

zi = ỹ1(ti).
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Figure 1: Estimation of the parameter set [ỹ2, ỹ3, ỹ4] using the continuous-discrete unscented
Kalman filter initialized with [1,4,10]. The true parameter values are marked. Confidence
intervals are three standard deviations to each side. The diffusion parameter (component 4)
is not estimated by the UKF.
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Figure 2: Estimation of the parameter set [ỹ2, ỹ3, ỹ4] using the meta-algorithm adapted
to the continuous-discrete unscented Kalman filter and initialized with [1,4,10]. The true
parameter values are marked. Confidence intervals are three standard deviations to each
side.
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Figure 3: Estimation of the parameters ỹ2, ỹ3 and ỹ4 (=stochastic volatility) using the meta-
algorithm adapted to the continuous-discrete unscented Kalman filter and initialized with
the true parameter values. The true parameters are marked. Confidence intervals are three
standard deviations to each side.
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Figure 4: Estimation of the parameters ỹ2, ỹ3 and ỹ4 (=stochastic volatility) using the meta-
algorithm adapted to the continuous-discrete unscented Kalman filter and initialized with
[1,4,0.2]. The true parameters are marked. Confidence intervals are three standard deviations
to each side.
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The estimation results using the meta-algorithm are shown in Figure 3. The algorithm is

initialized using the true parameter set and a diagonal covariance with variances of 1 for ψ1 and

ψ2 and of 0.01 for the volatility y2. As before, the first two parameters are estimated correctly.

Furthermore, the algorithm tracks the volatility fluctuations. In Figure 4, the algorithm is

initialized with the same covariance but with the parameter set [ỹ2, ỹ3, ỹ4] = [1, 4, 0.2]. This

time, the algorithm needs more time to estimate the parameters due to the necessary correction

time of the first two parameters. In both cases, the confidence intervals of all parameters do

not shrink as fast as in the case with constant diffusion coefficient as the fluctuations cannot

be captured perfectly.

6 Conclusion

In this paper Bayesian estimation of parameters of diffusion coefficients such as volatility

in nonlinear state space models using moment-based filters is conducted. As this cannot be

done by applying the moment-based filters directly, we present a meta-algorithm that can

be adapted to the moment-based filters, so that Bayesian estimation of diffusion coefficients

becomes possible. Our approach shows large advantages with respect to the computational

costs over simulation-based filtering methods. We present the algorithm in the context of

a continuous-discrete state space model using the recently proposed continuous-discrete un-

scented Kalman filter (Singer [18]). However, the algorithm can be used in a much broader

context, as with all moment-based filters or in purely discrete state space models.
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