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Abstract

We represent knowledge by using probability distributions of mixed
continuous and discrete variables. In the case of complete knowledge
of the joint distribution of all items, one can compute arbitrary con-
ditional distributions, which may be used for prediction. However,
in many cases only some marginal distributions, inverse probabili-
ties, or moments are known. Under these conditions, a principle is
needed in order to determine the full joint distribution of all vari-
ables. The principle of maximum entropy (Jaynes; 1957, 2003; Haken;
1977; Guiasu and Shenitzer; 1985) ensures an unbiased estimation
of the full multivariate relationships using only known facts. In the
case of discrete variables, the expert shell SPIRIT implements this
approach (cf. Rödder; 2006; Rödder and Meyer; 2006; Rödder et al.;
2006). In this paper the approach is generalized to continuous and
mixed continuous-discrete distributions and applied to the problem of
credit scoring.
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1 Introduction

The principle of maximum entropy (maxent) (Jaynes; 1957, 2003; Haken;
1977; Guiasu and Shenitzer; 1985) guarantees the unbiased (prejudice free)
estimation of unknown probability distributions when only some facts, such
as certain moment constraints, are known. For example, knowledge of the
mean and standard deviation leads to the Gaussian distribution, maximizing
the entropy functional. More generally, moment constraints lead to distri-
butions in the form of the exponential family. In the physics literature, one
speaks of Boltzmann or Gibbs distributions. They maximize the entropy
under mean energy and particle number constraints (canonical and grand
canonical distribution). In applications in economics, often discrete (e.g.
binary) variables are utilized (cf. Rödder; 2006; Rödder and Meyer; 2006;
Rödder et al.; 2006). On the other hand, many relevant variables are con-
tinuous, e.g. age, asset returns, gross national product, etc. Of course one
can discretize the continuous variables by using thresholds, but this leads to
a loss of available information.
Therefore, a theory for mixed discrete/continuous variables is developed and
implemented numerically. Moreover, conditional constraints such as con-
ditional probabilities are allowed, in order to use the partial knowledge in
certain subgroups of the full variable set.
The article is organized as follows: In sect. 2, the maximum entropy for-
malism is developed for unconditional restrictions, whereas conditional ex-
pectations are covered in sect. 3. The complete mixed variable theory with
multidimensional variables and multiple restrictions is treated in sect. 4. Nu-
merical considerations and conditionally Gaussian models are topic of sects.
5 and 6. Finally, the method is applied to the problem of credit scoring.

2 Entropy

First we define the relative entropy

S[p, p0] = −
∫

p(x) log
p(x)

p0(x)
dx ≤ 0 (1)

(cf. Kullback; 1959) of a probabability density p(x) w.r.t. a reference density
or prior p0(x). Using log x ≤ x − 1 the inequality in (1) is easily proved.
The maximum is obtained when p = p0, i.e. S[p0, p0] = 0. In the case of no
constraints, the maximum entropy distribution is thus equal to the prior p0,
e.g. the uniform distribution p0 = U(x; [a, b]) on the interval [a, b]. On the
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other hand, if knowledge is available in the form of moments

E[F (X)] =
∫

F (x)p(x)dx
!
= f, (2)

the entropy (1) must be maximized under this constraint. Introducing the
Lagrangian

L[p, λ] = S[p, p0] + λ(f − E[F ]), (3)

the extremal point is found by computing the functional derivative δ/δp(y)

δ

δp(y)
L[p, λ] = − log

p(y)

p0(y)
− 1 − λF (y)

!
= 0 (4)

using the rule

δp(x)

δp(y)
= δ(x − y), (5)

where δ(x − y) is the Dirac delta function. Solving for p(y) we obtain the
normalized maximum entropy density (Boltzmann distribution)

pB(y, λ) = Z−1p0(y) exp[−λF (y)] (6)

where Z(λ) is the partition function (Zustandssumme) 1

Z(λ) =
∫

p0(y) exp[−λF (y)]dy. (7)

The unknown Lagrange parameter λ must be determined in order to fulfil
the constraint (2). Inserting the Boltzmann distribution into the Lagrangian
we obtain the concentrated Lagrangian 2

L[pB, λ] = log Z(λ) + λf := L∗(λ). (8)

Thus the derivative of L∗(λ) w.r.t. λ leads to the constraint

∂L∗(λ)

∂λ
= −Z−1

∫
F (x)p0(y) exp[−λF (y)]dy + f (9)

= −E[F ] + f
!
= 0. (10)

The second derivative is

∂2L∗(λ)

∂λ2
= −E[F ]2 + E[F 2] = Cov(F ) ≥ 0 (11)

1Alternatively, one can introduce a normalization constraint
∫

p(x)dx = 1 with La-
grange parameter λ0, i.e. Z = exp(λ0).

2This terminology was borrowed from maximum likelihood theory, where the insertion
of certain partial solutions σ(θ) leads to a concentrated likelihood l(θ, σ(θ)).
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thus we seek a minimum of L∗(λ). In general the solution must be found
numerically, e.g. by using a quasi Newton method for minimization (cf.
Dennis Jr. and Schnabel; 1983).
In general on imposes k = 1, ...K restrictions

E[Fk(X)] =
∫

Fk(x)p(x)dx
!
= fk (12)

leading to a K-dimensional minimization problem. We obtain the second
derivative

∂2L∗(λ)

∂λkλk′
= −E[Fk]E[Fk′ ] + E[FkFk′] = Cov(Fk, Fk′) ≥ 0, (13)

which is the positive semidefinite covariance matrix of the constraints.

2.1 Example

Using the indicator function of the interval A as constraint function, we
obtain the probability restriction

P (A) = E[χA(X)] =
∫

A
p(x)dx

χA(X) =
{

1 X ∈ A
0 otherwise

.

The Boltzmann distribution is

pB(y, λ) = Z−1p0(y) exp[−λχA(y)]

with normalization constant

Z(λ) =
∫

p0(y) exp[−λχA(y)]dy.

Using the interval A = (−∞, 25] and P (A) = 0.4 with prior p0(x) =
φ(x; 45, 152) the maximum entropy distribution has the shape of a piecewise
distorted Gaussian (cf. fig. 1). The example may be interpreted as repre-
senting the age of a sample of study subjects (a priori information: mean 45
years, standard deviation 15 years) and the additional information that 40%
of the people are younger than 25 years.
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Figure 1: Boltzmann distribution for interval probability restriction P (X ∈
(−∞, 25]) = 0.4 and prior p0(x) = φ(x; 45, 152).

3 Conditional Restrictions

In many applications only conditional information is available. For example,
we may know the age distribution in the group of good or bad customers.
Similarly, the opinion of people may be known in the subgroups of preferences
for certain political parties. From these conditional expectations one wants
to estimate the full joint probability of the relevant variables.
We define the conditional constraint

E[F1]

E[F2]
= f12 =

∫
F1(x)p(x)dx∫
F2(x)p(x)dx

. (14)

For example, the following indicator functions define the conditional proba-
bility

P (A|B) = P (X ∈ A|X ∈ B) = f12

F1(x) = χA(x) χB(x) = χA∩B(x)

F2(x) = χB(x).

These restrictions can be implemented with the Lagrange functional

L[p, λ] = S[p, p0] + λ (f12E[F2] − E[F1]). (15)
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Computing the functional derivatives as in (4) one obtains the maximum
entropy distribution 3

pB(x, λ) = Z−1p0(x)eλ[f12F2(x)−F1(x)] (16)

Z(λ) =
∫

p0(x)eλ[f12F2(x)−F1(x)]dx. (17)

Inserting this into the Lagrangian (15) the unknown Lagrange parameters
are found by solving the minimization problem

L∗[λ] = log(Z)

L∗′ = Z−1Z ′

= Z−1
∫

[f12F2(x) − F1(x)]eλ[f12F2(x)−F1(x)]dx

= E[f12F2(X) − F1(X)] = 0

L∗′′ = Z−1Z ′′ − Z−2(Z ′)2

= Z−1
∫

[f12F2(x) − F1(x)]2eλ[f12F2(x)−F1(x)]dx

= E[f12F2(X) − F1(X)]2 ≥ 0.

The case of conditional restrictions includes the unconditional problem as
special case, if we set F1 = F, F2 = 1 and f12 = f . Then, L∗[λ] = λf +∫

p0(x) exp[−λF (x)]dx, recovering (8).

3.1 Example

We define the following conditional probability

P (A|B) = P (X ∈ A|X ∈ B) = pAB

F1(x) = χA(x) χB(x) = χA∩B(x)

F2(x) = χB(x)

f12 = pAB = 0.3

and assume A = [0, 3]; B = [2, 4]. Under the prior p0(x) = φ(x; 0, 102), the
resulting Boltzmann distribution is shown in fig. (2). It fulfils the condition
P ([2, 3])/P ([2, 4]) = 0.3 and is as close as possible to the prior. Imposing the
further condition P (A) = 0.6, fig. (3) is obtained. The function in the range
[0,3] is zoomed in order to get probability 0.6.

3also called Boltzmann-, Gibbs- or exponential distribution.
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Figure 2: Boltzmann distribution for conditional probability restriction
P (A|B) = 0.3 and prior p0(x) = φ(x; 0, 102). A = [0, 3]; B = [2, 4].
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Figure 3: Boltzmann distribution for conditional probability restriction
P (A|B) = 0.3. Additional constraint P (A) = 0.6.
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4 Mixed continuous-discrete problem

Introducing the discrete random variable I with distribution p(i), we define
the joint probability density p(x, i) with normalization

∑
i

∫
p(x, i)dx = 1. (18)

In general we assume that x = (x1, ..., xp) is a p-vector, dx = dx1...dxp is a
p-dimensional volume element and i = (i1, ..., iq) is a multi index. Using the
rule

δp(x, i)

δp(y, j)
= δ(x − y)δij (19)

with the Kronecker delta symbol δij = 1, i = j; δij = 0 otherwise, we obtain

pB(x, i, λ) = Z−1p0(x, i)eλ[f12F2(x,i)−F1(x,i)] (20)

Z(λ) =
∑

i

∫
p0(x, i)eλ[f12F2(x,i)−F1(x,i)]dx. (21)

In the case of k = 1, ..., K restrictions, we define the K-vectors λ = (λ1, ..., λK),
f12 = (f12,1, ..., f12,K), F1(x, i) = (F11(x, i), ..., F1K(x, i)), F2(x, i) = (F21(x, i),
..., F2K(x, i)) and use the scalar product notation x · y =

∑
k xkyk. Thus, the

general form of the Boltzmann distribution is

pB(x, i, λ) = Z−1p0(x, i)eλ·[f12F2(x,i)−F1(x,i)]. (22)

4.1 Example

We assume 2 groups, i = 1, 2, with conditional restrictions E(X2|i = 1) =
1, P (0 < X < 1|i = 2) = 0.4. This can be implemented by defining the
vector functions

f12 = (1, 0.4)

F1(x, i) = (x2 χ1(i), χ(0,1)(x)χ2(i))

F2(x, i) = (χ1(i), χ2(i)).

Furthermore, the uniform prior p0(x, i) = 1
2
U(x; [−5, 5]) was used. The result

is displayed in fig. (4). In group i = 1, we obtain a Gaussian distribution
due to a quadratic moment restriction, whereas in group i = 2 a piecewiese
constant density results. In applications, one is interested in the posterior
distribution p(i|x), e.g. in categorical regression or discriminant analysis.
Using the Bayes formula, one obtains the response functions as displayed
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Figure 4: Boltzmann distribution p(x, i) for the restrictions E(X2|i = 1) =
1, P (0 < X < 1|i = 2) = 0.4.

in fig. 5. They can be interpreted as Bayesian discriminant functions for
the groups numbered by i = 1, 2. In the ranges A = [−1.56, 0] and B =
[1, 1.56], the posterior probability is larger for group 1, thus we obtain a
quite complicated assignment rule (fig. 5).

5 Numerical considerations

The use of functional derivatives leads to the remarkable result, that the infi-
nite dimensional probability density p(x) can be computed explicitly without
using a finite dimensional parametrization p(x, θ), where θ is a parameter vec-
tor. In the discrete variable case, one has only the finite or countable set of
probabilities p(i) = pi. This usually leads to the idea of representing the
continuous density by some parametrization, such as the simple function

p(x; pi) =
∑

i

(pi/∆xi)χAi
(x)

Ai = (xi, xi + ∆xi]

with a partition Ai of the real axis. Then, integrals such as
∫

p log p dx
degenerate to sums

∑
pi log pi. This is only an approximation, however, and

as shown in the preceeding sections, not necessary at all.
Using the explicit form of the maximum entropy distribution (16) we just
have to compute the minimum of the concentrated Lagrangian L∗[λ] =
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Figure 5: Posterior distribution p(i|x) as function of x (above), odds ratio
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log(Z). Thus the key problem is the computation of the p-dimensional inte-
gral in the partition function Z(λ).

Z(λ) =
∫

p0(x)eλ[f12F2(x)−F1(x)]dx.

If the prior is Gaussian, one can easily use Gauss-Hermite integration. If
not, one can insert a model Gaussian φ(x; µ, Σ) with a suitable choice of
parameters. Using the transformed Gauss-Hermite sample points ξl = µ +
Σ1/2ζl, l = (l1, ..., lp), where ζl = (ζl1, ..., ζlp) are the standardized sample
points, Σ1/2 is a matrix square root, and weights wl = wl1,...,lp = wl1...wlp we
obtain the Gauss-Hermite approximation

Z(λ) ≈ ∑
l

wl
p0(ξl)

φ(ξl; µ, Σ)
exp(λ[f12F2(ξl) − F1(ξl)]). (23)

If p0 is Gaussian, the choice µ = µ0, Σ = Σ0 leads to an important sim-
plification. If not, one can choose the mean and variance of p0 in order to
make p0(x)/φ(x; µ, Σ) as flat as possible. Generally, it is important to shift
the sample points ξl to regions with a high contribution of the integrand.
Alternatively, one may use Gauss quadrature or other numerical integration
formulas.
The minimization of L∗(λ) was achieved using quasi-Newton methods such
as the BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithm (cf. Dennis Jr.
and Schnabel; 1983). This method avoids the computation of the Hessian
by using a secant update Jk. The optimal estimate of lambda is found by
iterating

λm+1 = λm + J−1
m L∗′(λm) (24)

with the initial choice J0 = IK (K-dimensional unit matrix), λ0 = 0k or some
other starting values. The algorithm is stopped if ||λm+1 − λm|| < ε1 and
||L∗′(λm)|| < ε2 for suitable choices of εi, e.g. 10−4. One can use numerical
or analytical derivatives by computing the gradient and Hessian

L∗′
k = E[f12,kF2k(X) − F1k(X)]

L∗′′
kk′ = E[f12,kF2k(X) − F1k(X)][f12,k′F2k′(X) − F1k′(X)],

k, k′ = 1, ...K.

Using the expectation values, one must again compute the integrals by nu-
merical quadrature. Using the second derivative (Hessian), one obtains the
classical Newton algorithm.
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6 Conditionally Gaussian models

It is interesting to explore the models, when the information is given in
form of conditional moments, e.g. the conditional mean and variance. For
example, in discriminant analysis it is assumed that the groups i = 1, ..., I
are normally distributed, i.e.

E[x|i] = µi

Var[x|i] = Σi.

Thus we set the restrictions (i′ = 1, ..., I)

F1i′(x, i) = (x, x2 − µ2
i′)χi′(i) (25)

F2i′(x, i) = (1, 1)χi′(i) (26)

E[F1i′ ]/E[F2i′ ] = (µi′ , Σi′) := f12i′ . (27)

The resulting joint probability is given explicitly

p(x, i, λ) = Z−1 exp[
∑
i′

λi′(f12i′F2i′(x, i) − F1i′(x, i))]

= p(x|i)p(i) = φ(x; µi, Σi) p(i) := φi p(i).

Thus imposing two moment restrictions leads to the conditionally Gaussian
model. For the purpose of prediction, the posterior probabilities are com-
puted by the Bayes formula

p(i|x) =
p(x|i)p(i)

p(x)
=

p(x|i)p(i)∑
j p(x|j)p(j)

=
1∑

j
p(x|j)p(j)
p(x|i)p(i)

=
1∑

j
φjp(j)

φip(i)

.

Especially in the case I = 2 (dichotomous variable i = 1, 2) we obtain

p(1|x) =
p(x|1)p(1)

p(x)
=

p(x|1)p(1)

p(x|1)p(1) + p(x|2)p(2)

=
1

1 + p(x|2)p(2)
p(x|1)p(1)

=
1

1 + φ2 p(2)
φ1 p(1)

.

Explicitly, the exponent of the quotient φ2

φ1
of the two Gaussians is

1
2
[(x − µ1)

′Σ−1
1 (x − µ1)

′ − (x − µ2)
′Σ−1

2 (x − µ2)
′],
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leading to the linear and quadratic discriminant functions

d1(x) = (µ2 − µ1)
′Σ−1x + ... (28)

(equal variances)

d2(x) = 1
2
x′(Σ−1

1 − Σ−1
2 )x + (µ′

2Σ
−1
2 − µ′

1Σ
−1
1 )x + ... (29)

(unequal variances).

Comparing with

l(x) =
1

1 + e−x

p(i = 1|x) = l(β ′x)

it is seen that the logistic function naturally occurs in the context of con-
ditionally Gaussian models. In the realistic case of unequal variances, a
quadratic generalized logistic regression of the form

p(i = 1|x) = [1 + αex′Γx−β′x]−1 (30)

is appropriate.

6.1 Example

N = 200 data points (x, i) were simulated from two populations with prob-
abilities p(1) = p(2) = 0.5. The continuous random variable X was drawn
from the uniform distribution U [0, 1] if i = 1 and U [1, 2] if i = 2. For
the density estimation problem, only the sample means and variances x̄1 =
0.512, s2

1 = 0.0767, x̄1 = 1.489, s2
2 = 0.0864 were substituted for the pop-

ulation moments (the true values are 0.5, 1/12=0.0833, 1.5, 1/12). The
restrictions were implemented as in eqn. (25). The solution is displayed in
fig. 6. Since the variances are nearly equal, the result is very similar to a lo-
gistic regression. Using data with unequal variances, one obtains fig. 7. The
shape of the nonlinear response function strongly deviates from the logistic
form. In the range of about x = −0.5, ..., 1, population 1 dominates, whereas
for higher and lower x values, the posterior p(i = 2|x) is higher. This stems
from the fact that a normal distribution with higher variance dominates in
the outer tails of the distribution. From the data set one can compute higher
order moments and use more restrictions. Adding the values of conditional
skewness and kurtosis to the restrictions, a Boltzmann distribution with ex-
ponents up to 4th order is obtained (fig. 8). The data fit is better and the
response function more sharply discriminates between the groups i = 1, 2.
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Figure 6: Joint p(x, i), marginal p(x) and posterior distribution p(i|x) as function
of x. Two conditional moments (Gaussian case).
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Figure 7: Joint p(x, i), marginal p(x) and posterior distribution p(i|x) as function
of x. Unequal variances.
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Figure 8: Joint p(x, i), marginal p(x) and posterior distribution p(i|x) as function
of x using 4 moments (mean, variance, skewness and kurtosis).
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7 Application: credit scoring

In this section the maximum entropy algorithm is applied to the problem
of credit scoring. We seek for variables which serve to predict the ability
of credit customers to pay a credit back. The data set was taken from a
south german bank 4 and contains 21 variables of continuous, ordinal and
nominal scales. In this context I concentrate on the continuous variables
x = creditsum (in Deutsche Mark) and y = age (in years). The credit vari-
able is i = 1 (if the credit was payed back) and i = 0 otherwise. The data
set contains n = 1000 subjects and n1 = 700 loans were repayed correctly.
The means and standard deviations in the groups i = 0, 1 are given by x̄0

= 3938.13 DM, sx0 = 3535.82 DM, x̄1 = 2985.44 DM, sx1 = 2401.5 DM, ȳ0

= 33.96 years, sy0 = 11.2252 years, ȳ1 = 36.22 years, sy1 = 11.3474 years.
An inspection of fig. (9) shows that the data are strongly skewed. Neverthe-
less we start with a model using the conditional moments E[x|i], Var(x|i),
E[y|i], Var(y|i), E[χ1(i)] leading to a conditionally Gaussian model. In or-
der to use the information in the data, we substitute the sample moments
for the expectation values, but continue to use the notation p(x, y, i) for the
estimated density function.
As discussed in sect. 6, the resulting posterior distribution is of logistic type,
but with a quadratic exponent (discriminant function). It is displayed in fig.
(12). The different standard deviations for the credit sum sx0 = 3535.82 DM,
sx1 = 2401.5 DM (fig. 10) are mirrored in the nonlinear response function
(12). In a range of credit sum up to about 7000 DM, the probability of
sucessful repayment is higher, whereas for higher values of the credit sum,
problems with repaying dominate. Note that the prior probabilities p0 = 0.3
and p1 = 0.7 must be considered as well.
Using 4 moments the skewness of the distributions p(x|i), p(y|i) is modeled
much better (fig. 11). The response function for x now favors good credits
up to about DM 12000, which is consistent with the prior p1 = 0.7 and the
slightly higher density p(x|i = 0) (fig. 11, left). From this point on, the bad
credits dominate.
The response functions of p(i|y = age) are somewhat different. In the Gaus-
sian case, the variances are nearly equal (fig. 10, right), leading to aproximate
logistic behavior (fig. 12, right). Using higher moments, the skewness differ-
ences of p(y|1) and p(y|2) are modeled much better (fig. 11, right), leading
to a strongly nonlinear response function (fig. 13, right).
For comparison, kernel density estimates of p(x, y|i) were computed using

4The data set was discussed in (Fahrmeir et al.; 1996), and is available at
http://www.stat.uni-muenchen.de/service/datenarchiv/kredit/kredit.html.
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Gaussian kernels. Using the Bayes formula, posterior probabilities p(i|x, y)
are obtained. The result is shown in fig. 14. The curves for credit sum
are similar to the maxent solution, but showing more detail (using a larger
bandwidth, stronger smoothing can be obtained). It is remarkable, that the
response function p(i|y = age) is different in the tails of the distribution.
Here, the bad credits dominate, as can also be seen from the marginal den-
sities (fig. 9). Of course, there are only few data points in these regions.
The simultanous influence of the independent variables x, y can be seen from
the response surface p(i|x, y) (fig. 15), which is quite complex. For compar-
ison, the kernel density result is displayed showing even more details (fig.
16).
Finally, we show the Gaussian case with equal variances in credit sum x
(the variances σ2

x0 = σ2
x1 were set equal to the pooled sample variance s2

x =
0.3s2

x0 +0.7s2
x1). The resulting response functions are the well known logistic

regression curves.
For comparison, the percentages of correct and misclassification are displayed
using the maximum a posteriori probability (MAP) prediction rule

î = arg max
i

p(i|x, y) ∈ {0, 1} (31)

All data points were used for prediction and cross tabulated with the true
class i = 0, 1. The error rates p01 + p10 are displayed in table 1. The
prediction rules perform only slightly better than the simple maximum a
priori rule arg maxi p(i) = 1 (line 1). As expected, maxent with 2 moments
is equivalent (up to rounding errors) to Bayesian discriminant analysis (DA;
computed with SAS/JMP). Equal variances correspond to linear DA (lines
4, 7), whereas unrestricted variances are equivalent to quadratic DA (lines
2, 8; cf. equ. 28).
The solution with four multivariate moments (lines 5, 6) is better than max-
ent/2, but only equal to the linear discriminant analysis result (=maxent/2,
equal variances). Using a uniform prior p(x, y, i) ∝ U [0, 20000] ∗ U [0, 100]
somewhat improves the error rate (line 3).
The nonparametric regression is best, because it uses all available informa-
tion. It should be noted, that no general conclusions can be drawn from one
data set.

Discussion The example shows, that real data may require modifications
from the usual logistic scenario in two respects:

1. The variances in the groups are unequal, leading to quadratic exponents
in the logistic functions.
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number method error p01 + p10

1 base rate p(i = 1) = 0.7: predict i = 1 0.3

maximum entropy

2 2 moments 0.298
3 2 moments, prior U [0, 20000] ∗ U [0, 100] 0.289
4 2 moments, equal variances 0.286
5 4 moments 0.291
6 4 moments, multivariate 0.288

discriminant analysis (SAS/JMP)

7 linear 0.288
8 quadratic 0.299

9 nonparametric regression 0.275

Table 1: Error rates of several algorithms.

2. Skewness and kurtosis of the conditional distribution leads to cubic and
quartic effects.

Of course, one may prefer kernel density estimates of the posterior distribu-
tions p(i|x, y), but the maximum entropy distribution attains a parametric
form (exponential density) which summarizes the information contained in
simple moment information (means, variances, skewness, kurtosis, etc.).

8 Conclusion

We have demonstrated how moment restrictions for mixed continuous-discrete
random variables can be used to compute the joint maximum entropy dis-
tribution of the variables. The explicit form of the Boltzmann distribution
was found without parametrization or discretization. Only the Lagrange
parameters (intensities) must be found using numerical procedures. Con-
ditional restrictions using two moments lead to the well known logistic re-
sponse functions, but we advocate the use of quadratic regressions due to
unequal variances in empirical data. Higher order moment information such
as skewness and kurtosis can be considered, leading to exponential densities
with cubic and quartic terms. In contrast to kernel density approaches, the
method also works if only summary statistics, and not a complete data set,
are available.
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Figure 9: Credit scoring: Kernel density estimates of the marginal densities
p(x|i), p(y|i), i = 0, 1.
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Figure 10: Credit scoring: Maximum entropy estimates of the marginal densities
p(x|i), p(y|i), i = 0, 1 using 2 moments (Gaussian distribution).
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Figure 11: Credit scoring: Maximum entropy estimates of the marginal densities
p(x|i), p(y|i), i = 0, 1 using 4 moments (exponential distribution).
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Figure 12: Credit scoring: Response function p(i|x), p(i|y), i = 0, 1 using 2
moments (Gaussian distribution).
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Figure 13: Credit scoring: Response function p(i|x), p(i|y), i = 0, 1 using 4
moments (exponential distribution).
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Figure 14: Credit scoring: Response function p(i|x), p(i|y), i = 0, 1 using kernel
density estimates.

20



response function p�repayment�no�credit sum, age��red

-5000

0

5000

10000

150000

20

40

60

80

100

0

0.2

0.4

0.6

0.8

1

00

0

5000

10000

response function p�repayment�yes�credit sum, age��red

-5000

0

5000

10000

150000

20

40

60

80

100

0

0.2

0.4

0.6

0.8

1

00

0

5000

10000

Figure 15: Response function p(i|x, y), i = 0, 1 using 4 moments (exponential
distribution).
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Figure 16: Response function p(i|x, y), i = 0, 1 using kernel density estimates.
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Figure 17: Equal variances σx1 = σx2: Maximum entropy estimates of the
marginal densities p(x|i), p(y|i), i = 0, 1 using 2 moments (Gaussian distribu-
tion).
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Figure 18: Equal variances σx1 = σx2: Logistic response functions p(i|x),
p(i|y), i = 0, 1.
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