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Exact moment equations for nonlinear Itô processes are derived. Taylor expansion of the
drift and diffusion coefficients around the first conditional moment gives a hierarchy of cou-
pled moment equations which can be closed by truncation or a Gaussian assumption. The
state transition density is expanded into a Hermite orthogonal series with leading Gaussian
term and the Fourier coefficients are expressed in terms of the moments. The resulting ap-
proximate likelihood is maximized by using a quasi Newton algorithm with BFGS secant
updates. A simulation study for the CEV stock price model compares the several approxi-
mate likelihood estimators with the Euler approximation and the exact ML estimator (Feller,
1951).
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1 INTRODUCTION

Continuous time stochastic processes are appropriate models for phenomena where no nat-
ural time interval in the dynamics is given. Examples are mechanical systems (Newton’s
equations) or stock price movements where no natural trading interval can be identified.
Different from that, measurements of this continuous time process Y (t) are frequently ob-
tained only at discrete time points ti (daily, weekly, quarterly, etc.), so that dynamical
models in econometrics are mostly formulated for the measurement times (time series mo-
dels). In contrast, we consider stochastic differential equations (SDE) for the state Y (t), but
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assume that only a sampled trajectory Yi := Y (ti) can be measured (cf. e.g. Bergstrom,
1990, Singer, 1995). Therefore, maximum likelihood estimation for sampled continuous time
models must be based on the transition probabilities in the observation interval ∆t. Unfor-
tunately, this key quantity is not analytically available in most cases and must be computed
by approximate schemes. The most simple is based on the Euler approximation of the SDE.
The resulting discrete time scheme leads to conditionally Gaussian transition densities. A
related approach is based on the moment equations for the first and second moment (for
a survey, cf. Singer, 2002). Again, a conditionally Gaussian scheme is obtained. Alterna-
tively, the drift coefficient can be expanded around the measurements to obtain a locally
linear SDE leading again to a conditionally Gaussian scheme (Shoji and Ozaki, 1997, 1998).
Quasi likelihood methods using conditional moments are also discussed in Shoji (2002). Still
another Gaussian approach using stopping times is discussed by Yu and Phillips (2001).
Whereas these approximations are extremely useful for small sampling intervals where the
transition density only slightly deviates from normality, for larger intervals corrections are
necessary which take account of skewness and kurtosis (and higher order characteristics)
of the true density. Among these approaches are Monte Carlo simulations (Andersen and
Lund, 1997, Elerian et al., 2001, Singer, 2002, 2003), approximate analytical approaches (Aı̈t-
Sahalia, 2002) and finite difference methods for the Fokker-Planck equation (cf. Jensen and
Poulsen, 2002). In this paper we consider a Hermite expansion with leading Gaussian term,
but in contrast to Aı̈t-Sahalia (2002) the expansion coefficients are expressed in terms of
conditional moments and computed by solving deterministic moment equations.
The article is outlined as follows: In section 2 the basic model is stated and the equation for
the transition density is formulated. Section 3 briefly introduces the maximum likelihood
method. Section 4 introduces the Hermite expansion used to approximate the transition
density and the moment equations are derived in section 5. In section 6, a simulation
study is performed using an SDE with nonlinear diffusion coefficient (Constant Elasticity of
Variance – CEV), and the performance of the several density approximations are compared
with the exact solution. Finally, in an appendix, the moment equations are derived.

2 NONLINEAR CONTINUOUS/DISCRETE STATE

SPACE MODELS

We discuss the nonlinear stochastic differential equation (SDE)

dY (t) = f(Y (t), t, ψ)dt+ g(Y (t), t, ψ)dW (t) (1)

where discrete measurements Yi are taken at times {t0, t1, . . . , tT} and t0 ≤ t ≤ tT according
to

Yi = Y (ti) (2)

In the state equation (1), W (t) denotes a r-dimensional Wiener process and the state is
described by the p-dimensional state vector Y (t). It fulfils a system of stochastic differential
equations in the sense of Itô (cf. Arnold, 1974) with initial condition Y (t0). The functions
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f : R
p×R×R

u → R
p and g : R

p×R×R
u → R

p×R
r are called drift and diffusion coefficients,

respectively.
Parametric estimation is based on the u-dimensional parameter vector ψ. The key quantity
for the computation of the likelihood function is the transition probability p(y, t|x, s) which
is a solution of the Fokker-Planck equation

∂p(y, t|x, s)
∂t

= −∑
i

∂

∂yi
[fi(y, t, ψ)p(y, t|x, s)]

+1
2

∑
ij

∂2

∂yi∂yj
[Ωij(y, t, ψ)p(y, t|x, s)] (3)

subject to the initial condition p(y, s|x, s) = δ(y − x) (Dirac delta function). The diffusion
matrix is given by Ω = gg′ : R

p × R × R
u → R

p × R
p. Under certain technical conditions the

solution of (3) is the conditional density of Y (t) given Y (s) = x (see, e.g. Wong and Hajek,
1985, ch. 4).
Extensions to nonlinear noisy measurements are given in Gordon et al. (1993), Kitagawa
(1987, 1996), Hürzeler and Künsch (1998) and Singer (2003).
In order to model exogenous influences, f and g are assumed to depend on deterministic
regressor variables x(t) : R → R

q, i.e. f(.) = f(y, t, x(t), ψ) etc. For notational simplicity,
the dependence on the x(t) will be suppressed.

3 COMPUTATION OF THE

LIKELIHOOD FUNCTION

In order to compute the likelihood function of system (1, 2), we can express the probability
distribution of states Y (t0), . . . , Y (tT ) in terms of solutions of Fokker-Planck equation (3).
Using the Markov property of Y (t) we obtain

p(yT , . . . , y1|y0;ψ) =
T−1∏
i=0

p(yi+1|yi;ψ), (4)

where p(yT , . . . , y1|y0;ψ) is the joint distribution of measurements conditional on Y (t0) = y0

(cf. Lo, 1988) and p(yi+1|yi;ψ) := p(yi+1, ti+1|yi, ti;ψ) is the transition probability density.
Defining the likelihood function as Lψ(y) := p(yT , . . . , y1|y0;ψ) and the ML estimator as

ψ̂ := arg maxψ Lψ(Y ) we must solve Fokker-Planck equation (3) repeatedly in a nonlinear
optimization algorithm. Only in the case of a linear vector field f and state independent
diffusion coefficient g we obtain a Gaussian transition density but otherwise complicated
functions arise. In some special cases analytical solutions have been derived. For example,
in the case of linear f(y) = µy and g(y) = σyα/2, which is the well known constant elas-
ticity of variance (CEV) diffusion process used in option pricing (cf. Feller, 1951, Cox and
Ross, 1976), an analytical solution has been derived by Feller involving Bessel functions. In
the general multivariate case, we cannot hope to obtain analytical solutions and must re-
sort to approximations and numerical procedures for (3) (matrix continued-fractions, finite
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differences, Monte Carlo methods etc.; cf. Risken, 1989, Press et al., 1992, Ames, 1992,
Kloeden and Platen, 1992). Alternatively, the prediction error identification method (Ljung
and Söderström, 1983), the extended Kalman filter EKF or other linearization methods
(e.g. Shoji and Ozaki, 1997) lead to approximations of the conditional density in terms of
conditional Gauss distributions (for a survey, see Jensen and Poulsen, 2002).
Conditional Gaussian approximations work well when the sampling intervals ∆ti = ti+1 − ti
are not too large in comparision with the dynamics as specified in f and g. On the other
hand, time series and panel data often involve large sampling intervals which are fixed by
the design of the study. Therefore, corrections must be made to the Gaussian transition
probability. Here we use a Hermite expansion with leading Gaussian term and corrections
involving higher order moments.

4 HERMITE EXPANSION

The transition density p(yi+1|yi;ψ) can be expanded into a Fourier series (cf. Courant and
Hilbert, 1968, ch. II, 9, Abramowitz and Stegun, 1965, ch. 22) by using the complete set
of Hermite polynomials which are orthogonal with respect to the weight function w(x) =
φ(x) = (2π)−1/2 exp(−x2/2) (standard Gaussian density), i.e.∫ ∞

−∞
Hn(x)Hm(x)w(x)dx = δnmn! (5)

The Hermite polynomials Hn(x) are defined by

φ(n)(x) := (d/dx)nφ(x) = (−1)nφ(x)Hn(x). (6)

and are given explicitly by H0 = 1, H1 = x,H2 = x2 − 1, H3 = x3 − 3x,H4 = x4 − 6x2 + 3
etc. Therefore, the density function p(x) can be expanded as 1

p(x) = φ(x)
∞∑
n=0

cnHn(x). (7)

and the Fourier coefficients are given by

cn := (1/n!)
∫ ∞

−∞
Hn(x)p(x)dx = (1/n!)E[Hn(X)] (8)

where X is a random variable with density p(x). Since the Hermite polynomials contain
powers of x, the expansion coefficients can be expressed in terms of moments of X, i.e.
µk = E[Xk]. Explicitly the first terms are given by

c0 := 1 (9)

c1 := E[H1(X)] = E[X] = µ1 := µ (10)

1Actually, the expansion is in terms of the orthogonal system ψn(x) = φ(x)1/2Hn(x) (oscillator eigen-
functions, i.e. q(x) := p(x)/φ(x)1/2 =

∑∞
n=0 cnψn(x), so the expansion of q = p/φ1/2 must converge.

The function to be expanded must be square integrable in the interval (−∞,+∞), i.e.
∫
q(x)2dx =∫

exp(x2/2)p2(x)dx <∞ (Courant and Hilbert, 1968, p. 81–82).
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c2 := (1/2!)E[H2(X)] = (1/2)E[X2 − 1] = (1/2)(µ2 − 1) (11)

c3 := (1/3!)E[H3(X)] = (1/6)E[X3 − 3X] = (1/6)(µ3 − 3µ) (12)

c4 := (1/4!)E[H4(X)] = (1/24)E[X4 − 6X2 + 3] = (1/24)(µ4 − 6µ2 + 3) (13)

etc. Using the standardized variables Z = (X − µ)/σ with µ = E[X], σ2 = E[X2] − µ2,
E[Z] = 0, E[Z2] = 1, E[Zk] := νk one obtains the simplified expressions

c0 := 1 (14)

c1 := 0 (15)

c2 := 0 (16)

c3 := (1/3!)E[Z3] = (1/3!)ν3 (17)

c4 := (1/4!)E[Z4 − 6Z2 + 3] = (1/24)(ν4 − 3) (18)

and the density expansion

pz(z) := φ(z)[1 + (1/6)ν3H3(z) + (1/24)(ν4 − 3)H4(z) + ...] (19)

which shows that the leading Gaussian term is corrected by higher order contributions con-
taining skewness and kurtosis excess. For a Gaussian random variable, pz(z) = φ(z), so the
coefficients ck, k ≥ 3 all vanish. For example, the kurtosis of Z is E[Z4] = 3, so c4 = 0.
Using the expansion for the standardized variable and the change of variables formula px(x) =
(1/σ)pz(z); z = (x− µ)/σ one derives the convenient formula

px(x) := (1/σ)φ(z)[1 + (1/6)ν3H3(z) + (1/24)(ν4 − 3)H4(z) + ...] (20)

and the standardized moments νk = E[Zk] = E[(X − µ)k]/σk := mk/σ
k can be expressed in

terms of centered moments

mk := E[Mk] := E[(X − µ)k]. (21)

For these moments differential equations will be derived in the following.

5 SCALAR MOMENT EQUATIONS

5.1 Conditionally Gaussian model

Denoting the conditional mean and variance as µ(t|ti) = E[Y (t)|Y i] and m2(t|ti) = Var[Y (t)|
Y i], where Y i = {Yi, . . . , Y0} are the measurements up to time ti, these fulfil the exact
equations (ti ≤ t ≤ ti+1)

µ̇(t|ti) = E[f(Y (t), t)|Y i] (22)

ṁ2(t|ti) = 2E[f(Y (t), t) ∗ (Y (t) − µ(t|ti))|Y i] + E[Ω(Y (t), t)|Y i] (23)

between measurements with initial condition µ(ti|ti) = Yi;m2(ti|ti) = 0. These equations can
be derived from Fokker-Planck equation (3) using partial integration (see appendix). They
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are not differential equations, however, because the expectation values require knowledge of
the conditional density p(y, t|Y i).
Expanding the drift f and the diffusion term Ω around the mean µ(t|ti) up to first order,
and inserting this into (22-23) leads to the coupled closed system of approximate moment
equations (Jazwinski, 1970, ch. 9)

µ̇(t|ti) = f(µ(t|ti), t) (24)

ṁ2(t|ti) = 2f ′(µ(t|ti), t)m2(t|ti) +Ω(µ(t|ti), t) (25)

where the first derivative of the drift is defined by

f ′(y, t) :=
∂f(y, t)

∂y
. (26)

These are the time update equations of the extended Kalman filter (EKF). If the diffusion
coefficient is frozen at time ti with measurement Yi, i.e. Ω(µ(t|ti), t) = Ω(Yi, ti), Nowman’s
method is obtained (Nowman, 1997, Yu and Phillips, 2001).
Expanding the drift f and the diffusion matrix Ω up to second order around the estimate
µ(t|ti) and inserting this into (22-23) leads to second order equations which are used in the
so called second order nonlinear filter (SNF; Jazwinski, 1970, ch. 9; cf. eqn. 44).
A related method is the so called local linearization method (LL) of Shoji and Ozaki (1997,
1998). They use Itô’s lemma and expand the drift into

f(Y (t), t) = f(Yi, ti) +
∫ t

ti
fy(Y, s)dY (s) +

∫ t

ti
[fs(Y, s) + 1

2
fyy(Y, s)Ω(Y, s)]ds (27)

Freezing the coefficients at (Yi, ti) and approximation of the integrals yields

f(Y (t), t) ≈ f(Yi, ti) + fy(Yi, ti)(Y (t) − Yi) +

+[fs(Yi, ti) + 1
2
fyy(Yi, ti)Ω(Yi, ti)](t− ti) (28)

Therefore the drift is approximately linear and one obtains the linear SDE

dY (t) ≈ fy(Yi, ti)Y (t)dt+

+[f(Yi, ti) − fy(Yi, ti)Yi + (fs(Yi, ti) + 1
2
fyy(Yi, ti)Ω(Yi, ti))(t− ti)]dt+

+g(Yi, ti)dW (t) (29)

From this one obtains moment equations similar to the SNF (for a thorough discussion see
Singer, 2002, sect. 3.3.–3.4).
In all cases the approximate likelihood function is computed recursively using the prediction
error decomposition (Schweppe, 1965)

Lψ(z) =
T−1∏
i=0

|2πΓi+1|i|−1/2 exp
{
−1

2
ν2
i+1/Γi+1|i

}
(30)

νi+1 = Yi+1 − µ(ti+1|ti) (31)

Γi+1|i = m2(ti+1|ti) (32)

with prediction error νi+1 and conditional variance m2(ti+1|ti). Since higher order moments
were neglected, the (quasi) likelihood is a product of conditional Gaussian densities.
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5.2 Higher order moments

The higher order conditional moments (for simplicity the condition and the time argument
is suppressed)

mk := E[Mk] := E[(Y − µ)k]. (33)

fulfil the equations (see appendix)

ṁk = kE[f(Y ) ∗ (Mk−1 −mk−1)] + 1
2
k(k − 1)E[Ω(Y ) ∗Mk−2] (34)

with initial condition mk(ti|ti) = 0. Again, these are not differential equations, and Taylor
expansion of f and Ω around µ yields

f(y) :=
∞∑
l=0

f (l)(µ)
(y − µ)l

l!
(35)

Inserting this into (22, 34) yields

µ̇ :=
∞∑
l=0

f (l)(µ)
ml

l!
(36)

= f(µ) + 1
2
f ′′(µ)m2 + 1

6
f ′′′(µ)m3 + ... (37)

and (k ≥ 2)

ṁk = k
∞∑
l=1

f (l)(µ)

l!
(ml+k−1 −mlmk−1) + 1

2
k(k − 1)

∞∑
l=0

Ω(l)(µ)

l!
ml+k−2. (38)

In analogy to EKF and SNF, the abbreviation HNF(K,L) (higher order nonlinear filter) will
be used.
For practical applications, three problems must be solved:

1. One must chose a number K of moments to consider.

2. The expansion of f and Ω must be truncated somewhere (l = 0, ..., L).

3. On the right hand side moments of maximal order L + K − 1 occur, so that only in
the special case L = 1 (locally linear approximation of f and Ω) a closed system of
equations results. In other cases, two methods are frequently used:

(a) Higher order moments are neglected: mk = 0; k > K

(b) Higher order moments are factorized by the Gaussian assumption

mk =

{
(k − 1)!!m

k/2
2 ; k > K is even

0; k > K is odd
(39)

7



5.2.1 Example: expansion up to 4th order (truncation)

Expanding f and Ω up to 4th order and using 4 moments with truncation, one obtains, for
quick reference, the explicit system

µ̇ = f(µ) + (1/2)f ′′(µ)m2 + (1/6)f ′′′(µ)m3 + (1/24)f ′′′′(µ)m4 (40)

ṁ2 = 2f ′(µ)m2 + f ′′(µ)m3 + (1/3)f ′′′(µ)m4 +

Ω(µ) + (1/2)Ω′′(µ)m2 + (1/6)Ω′′′(µ)m3 + (1/24)Ω′′′′(µ)m4 (41)

ṁ3 = 3[f ′(µ)m3 + (1/2)f ′′(µ)(m4 −m2
2) − (1/6)f ′′′(µ)m2m3 − (1/24)f ′′′′(µ)m2m4] +

3[Ω′(µ)m2 + (1/2)Ω′′(µ)m3 + (1/6)Ω′′′(µ)m4)] (42)

ṁ4 = 4[f ′(µ)m4 − (1/2)f ′′(µ)m2m3 − (1/6)f ′′′(µ)m2
3 − (1/24)f ′′′′(µ)m3m4] +

6[Ω(µ)m2 +Ω′(µ)m3 + (1/2)Ω′′(µ)m4] (43)

5.2.2 Example: second order nonlinear filter (SNF)

For example, setting (K = 2, L = 2), one again obtains the second order nonlinear filter
(SNF)2

µ̇ = f(µ) + 1
2
f ′′(µ)m2 (44)

ṁ2 = 2f ′(µ)m2 + f ′′(µ)m3 +Ω(µ) + 1
2
Ω′′(µ)m2 (45)

Neglecting m3 (truncation or Gaussian asumption) a closed system occurs. Setting (K =
2, L = 1) reproduces (24-25), the extended Kalman filter EKF.

5.2.3 Example: locally linear approximation L = 1

If we chose L = 1 (locally linear approximation), the moment equations yield the closed
system

µ̇ = f(µ) (46)

and (k ≥ 2)

ṁk = kf ′(µ)mk + 1
2
k(k − 1)[Ω(µ)mk−2 +Ω′(µ)mk−1] (47)

For the second and third moment we obtain

ṁ2 = 2f ′(µ)m2 +Ω(µ) (48)

ṁ3 = 3f ′(µ)m3 + 3Ω′(µ)m2 (49)

Thus, if m3(ti|ti) = 0, which is the case at the times of measurement, and for a state
independent diffusion coefficient (Ω(y, t) = Ω(t)) the solution m3(t|ti) will remain zero and

ṁ4 = 4f ′(µ)m4 + 6Ω(µ)m2 (50)

2with trivial measurement model z = y
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is solved by m4 = 3m2
2, as required by a Gaussian solution. This is not surprising since linear

systems (1) generate Gaussian stochastic processes. Including higher derivatives f ′′, Ω′ etc.
yields deviations from Gaussianity and the skewness and kurtosis excess m4 − 3m2

2 will not
remain null for large time intervals ∆ti.
For example, the square root stock price model (cf. Feller, 1951, Cox and Ross, 1976)

dY (t) = rY (t)dt+ σY (t)1/2dW (t). (51)

has a linear drift and diffusion term Ω(y) = σ2y with derivatives Ω
′
(y) = σ2, Ω(l)(y) = 0, l ≥

2. In this case, the exact equations for the first and second moments

µ̇ = rµ (52)

ṁ2 = 2rm2 + σ2µ (53)

yield a closed linear system (see, e.g. Bibby and Sorensen, 1995). It can be solved explicitly
by

µ(t|ti) = exp[r(t− ti)]Yi (54)

m2(t|ti) =
σ2

r
[exp(2r(t− ti)) − exp(r(t− ti))]Yi. (55)

Freezing the diffusion term σ2µ(t|ti) = σ2Yi yields the Nowman approximation method with
solution

µ(t|ti) = exp[r(t− ti)]Yi (56)

m2(t|ti) =
σ2

2r
[exp(2r(t− ti)) − 1]Yi. (57)

Both expressions coincide for small r → 0. Since the drift is linear, the Shoji-Ozaki method
(29) yields the same equations as the Nowman approximation.
The equation for the third moment

ṁ3 = 3rm3 + 3σ2m2 (58)

contains an inhomogenous term yielding a skewed density after some time. Moreover,

ṁ4 = 4rm4 + 6σ2(µm2 +m3) (59)

is not solved anymore by the Gaussian factorization m4 = 3m2
2 due to the skewness term

σ2m3.
For the parameter vector ψ = {r, σ} = {0.1, 0.2} we obtain the equations (K = 4, L = 1)

d/dt



µ
m2

m3

m4


 =




0.1µ
0.04µ+ 0.2m2

0.12m2 + 0.3m3

6(0.04µm2 + 0.04m3) + 0.4m4


 (60)

The equations were solved by an Euler scheme with discretization interval δt = 1/250 year
and T = 1000 time steps corresponding to Tδt = 4 years and initial condition m(ti|ti) =
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Figure 1: Square root model: evolution of 4 conditional moments in the time interval [0,4] using
the Euler method with δt = 1/250 and T = 1000 time steps (µ=red, m2=green, m3=red,
m4=yellow).
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[1, 0, 0, 0]′. The evolution of the 4 moments is shown in fig. (1). It can be seen that
the skewness does not remain zero. The corresponding approximate densities pk,L=1(y),
k = 2, ..., 7. (cf. eqn. 20) are plotted in fig. (2) together with the exact solution (Feller,
1951).
Unfortunately, the expansion does not converge, although low order approximations such as
k = 3 are quite good (see figs. 6, 7 and next section).

5.3 Transformed equations and Jacobi terms

The Hermite expansion (7) is actually based on the Fourier series (footnote 1)

p(x)/φ(x)1/2 =
∞∑
n=0

cnψn(x) (61)

ψn(x) = φ(x)1/2Hn(x) (62)

in terms of oscillator eigenfunctions. This means, that the expansion for q = p/φ1/2 should
exist (

∫
p2/φ dx <∞) and p must be close to a normal distribution.

5.3.1 Log-normal density

For example, the transition density for the geometric brownian motion

dX = rXdt+ σXdW (63)
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Figure 2: Square root model: Approximate densities pk,1(y) with Hermite expansion up to K = 7
(orange) and exact density (red).
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Figure 3: Square root model: exact density (red), approximate density p2,1(y) with Hermite
expansion up to K = 2 (EKF, orange) and Euler density (green).
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is lognormal, so that

p(x, t|x0, t0) = 1/(x
√

2πγ2) exp[−(log(x/x0) − ν)2/(2γ2)] (64)

ν = (r − σ2/2)(t− t0) (65)

γ2 = σ2(t− t0), (66)

p/φ1/2 → ∞, and the Hermite series does not converge. As an example the log-normal
variable X = exp(Y ) with parameters E[Y ] = ν = 1 and Var[Y ] = γ2 = 1 is considered.
Thus we obtain E[X] = exp(ν + γ2/2) = 4.48169. The normalized series expansion for p(x)
is shown in fig. (4). On the other hand, the direct expansion of p(x)

p(x) =
∞∑
n=0

bnψn(x) (67)

ψn(x) = φ(x)1/2Hn(x) (68)

in terms of oscillator eigenfunctions does converge (cf. footnote 1 and fig. 5), but the
expansion coefficients

bn := (1/n!)
∫ ∞

−∞
φ(x)1/2Hn(x)p(x)dx = (1/n!)E[Hn(X)φ(X)1/2] (69)

cannot be easily expressed in terms of moments of X. But these are the quantities we can
compute from the moment equations (34) or by other approximation procedures.

5.3.2 Square root model

The square root model of section (5.2.3) can be solved exactly using Bessel functions (Feller,
1951) and the moments mk were computed numerically from this exact density. A plot of
the function q2(z) = pz(z)

2/φ(z) (fig. 6), where pz(z) = py(µ + σz)σ is the standardized
density function, reveals that the convergence condition is not fulfilled. Expanding up to
order K = 19, the nonconvergence is shown in fig. 7. As mentioned earlier, low order
approximations such as k = 3, 6 are nevertheless quite good. Again, a direct expansion in
terms of oscillator eigenfunctions yields a convergent series (67).

5.3.3 Transformation

Following an idea of Aı̈t-Sahalia (2002), the Itô process X(t) of interest is first transformed
into Y = τ(X) using Itô’s lemma, such that the diffusion coefficient is constant. It can
be shown that the resulting transition density py(y) is suffiently close to a normal density
(Aı̈t-Sahalia, loc. cit., prop. 2), so that a convergent Hermite expansion is possible. The
original density can be computed by the change of variable formula

px(x)dx = py(τ(x))τ
′(x)dx (70)

y = τ(x) (71)
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Figure 4: Log-Normal density LN(ν = 1, γ2 = 1) (red) and nonconvergent Hermite expansion
of p(x) with order 2 (orange), 3 (yellow) and 4 (green).
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Figure 5: Log-Normal density LN(ν = 1, γ2 = 1) (red) and convergent direct Hermite expansion
of p(x) in terms of oscillator eigenfunctions with order 20 (orange), 40 (yellow) and 60 (green).
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Figure 6: Square root model: plot of convergence condition q2(z) = pz(z)
2/φ(z) (q must be

square integrable).
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For the expansion of py(y) we use the standardized expression

py(y) := (1/σ)φ(z)[1 + (1/6)ν3H3(z) + (1/24)(ν4 − 3)H4(z) + ...], (72)

Z = (Y − µ)/σ;µ = E[Y ], σ2 = Var(Y ) (cf. eqn. 20). Thus, for small time spans ∆t,
the conditional variance σ2 ≈ ∆t, so Z corresponds to Aı̈t-Sahalia’s ”pseudo-normalized”
increment (Y − µ)/

√
∆t. It remains to determine the transformation function. Itô’s lemma

yields

dY = τx(X, t)dX + τt(X, t)dt+ (1/2)τxx(X, t)dX
2 (73)

= [τx(X, t)f + τt(X, t) + (1/2)τxx(X, t)g
2(X, t)]dt+ τx(X, t)g(X, t)dW (74)

dX = f(X, t)dt+ g(X, t)dW (75)

and thus

τx(x, t)g(x, t) = 1 (76)

τ(x, t) =
∫ x

dx′/g(x′, t). (77)

For example, the diffusion term of geometric brownian motion is g(x) = σx and we obtain
y = τ(x) =

∫ x dx′/(σx′) = (1/σ) log(x).
The transformation approach is simple in the scalar case, but for vector processes the system

p∑
j=1

∂τi(x, t)

∂ xj
gjk(x, t) = δik; i = 1, ..., p, k = 1, ..., r (78)

must be solved. Therefore, in the sequel we study the scalar case without transformation in
order to apply the method in the multivariate case.
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Figure 7: Square root model: Approximate densities pk(y) with Hermite expansion up to K = 19
(orange) and exact density (red). The moments were computed from the exact density function.
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Figure 8: Square root model: simulated trajectory and approximate 67% prediction intervals

µ(t|ti) ±
√
m2(t|ti) (K = 3).
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6 SIMULATION STUDIES

The Hermite expansion approach was tested in simulation studies and compared with the
Euler approach, the Nowman method (a simplified EKF; see 5.1) and the exact ML method
using the Feller density. Weekly, monthly and quarterly observations of the square root
model were generated on a daily basis, i.e. we chose a discretization interval of δt = 1/365
(year) and simulated daily series using the Euler-Maruyama scheme

yj+1 = yj + f(yj, tj)dt+ g(yj, tj)δWj , (79)

δWj ,∼ N(0, δt) i.i.d., j = 0, ...J , J = 3000. The data were sampled weekly and monthly
at times ji = (∆t/δt)i, i = 0, ...T with ∆t = 7/365, 30/365 (year) and ji ≤ J . Thus the
sampled series have length T = floor(3000/7) = 428 and T = 3000/30 = 100. In order to
obtain a comparable sample size in the case of monthly measurements, also daily series of
length J = 12000 with sampled length T = 12000/30 = 400 were simulated. The parameter
values in the CEV model

dY (t) = rY (t)dt+ σY (t)α/2dW (t). (80)

are ψ = {r = .1, α = 1, σ = .2} corresponding to a square root model. The data were
simulated using this true parameter vector, but in the estimation procedure no restrictions
(such as α = 1) were employed. Fig. 8 shows a simulated trajectory and approximate

67% prediction intervals µ(t|ti)±
√
m2(t|ti) for 30 day measurements (K = 3). Actually, the

transition density is skewed (fig. 7) and the Gaussian prediction interval is only approximate.
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Table 1: Square root model: Means and standard deviations of ML estimates in M = 100
replications. Weekly measurements of daily series (δt = 1/365 year, ∆t = 7/365 year).

weekly measurements: ∆t = 7/365, J = 3000
true values mean std bias RMSE

EKF (K = 2, L = 1)
r = 0.1 0.0790961 0.0657432 -0.0209039 0.0689866
α = 1 0.972559 0.333523 -0.0274412 0.334649
σ = 0.2 0.20078 0.0141277 0.00078025 0.0141492

SNF (K = 2, L = 2)
r = 0.1 0.0790959 0.0657432 -0.0209041 0.0689866
α = 1 0.972554 0.333539 -0.0274455 0.334666
σ = 0.2 0.200779 0.0141299 0.00077942 0.0141514

HNF (K = 3, L = 3)
r = 0.1 0.0793155 0.0655923 -0.0206845 0.0687764
α = 1 0.983154 0.343083 -0.0168457 0.343496
σ = 0.2 0.200648 0.0142035 0.000647821 0.0142183

Euler density
r = 0.1 0.0791831 0.065808 -0.0208169 0.069022
α = 1 0.972563 0.333517 -0.0274366 0.334644
σ = 0.2 0.200976 0.0141384 0.00097614 0.0141721

Nowman method
r = 0.1 0.0790813 0.0657323 -0.0209187 0.0689806
α = 1 0.972553 0.333525 -0.0274474 0.334652
σ = 0.2 0.200824 0.0141201 0.000823618 0.0141441

Exact density (Feller)
r = 0.1 0.0801646 0.0659163 -0.0198354 0.0688361
α = 1 0.960829 0.305208 -0.0391709 0.307711
σ = 0.2 0.201155 0.0138222 0.00115478 0.0138704
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6.1 Weekly data

Table (1) displays the estimation results for weekly sampling interval ∆t = 7/365 year.
Comparing the estimation methods, the exact approch is best in terms of root mean square

error RMSE =
√

Bias2 + Std2, Bias :=
¯̂
θ − θ, Std =

√
(M − 1)−1

∑
m(θ̂m − ¯̂

θ)2. Nowman’s
method (section 5.1), which approximates the moment equation for m2, leads to slightly
worse results than the EKF. The third order approximation HNF(3,3) shows small bias but
somewhat larger standard errors. Also, the simple Euler estimator performs well. Generally,
all methods show small bias and are comparable in terms of RMSE.

6.2 Monthly data

The bias of the approximation methods (deviations from conditional normal distribution)
should show up for larger sampling interval. Indeed, using monthly data, table (2) shows,
that the Euler method and other approximations (except HNF(3,3) have slight disadvantages
in relation to the exact ML, in what regards bias. Again, the differences are not pronounced.
Since we have only T = 3000/30 = 100 sampled observations, the simulation study was
repeated using T = 12000/30 = 400 sampled observations, which is comparable to 3000/7 ≈
428 in table (1). The results are shown in table 3. Again, exact ML is best in terms of RMSE
(except for σ, where the HNF(3,3) and Nowman’s method are better). The Euler method
shows the worst results reflecting the large sampling interval. The HNF(3,3) dominates the
Nowman method for all three parameters. It is surprising that EKF and SNF perform worse
than Nowman’s method. However, since α is not restricted to 1 in the estimation procedure,
the EKF (SNF) variance equation is not exact, but given as

ṁ2 = 2rm2 + σ2µα + 1
2
σ2α(α− 1)µα−2. (81)

By contrast, Nowman’s approximation is (cf. 45)

ṁ2 = 2rm2 + σ2Y α
i . (82)

7 CONCLUSION

The transition density of a diffusion process was approximated as Hermite series and the
expansion coefficients were expressed in terms of conditional moments. Taylor expansion
of the drift and diffusion functions leads to a hierarchy of approximations indexed by the
number of moments and the order of the Taylor series. The square root model, which is an
important model for stock prices, was estimated using a CEV specification. Using weekly
and monthly sampling intervals, the different approximation methods were comparable in
performance to the exact ML method, but for large sampling intervals the simple Euler
approximation has degraded performance in relation to the EKF type Gaussian likelihood
and higher order skewed densities. For the chosen parameter values which are typical for
stock prices, the differences are not very pronounced, however. Further studies will use
higher order Hermite approximations and derive equations for the expansion coefficients of
the direct Hermite series (67). Moreover, generalizations to the vector case will be derived.
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Table 2: Square root model: Means and standard deviations of ML estimates in M = 100
replications. Monthly measurements of daily series (δt = 1/365 year, ∆t = 30/365 year).

monthly measurements: ∆t = 30/365, J = 3000
true values mean std bias RMSE

EKF (K = 2, L = 1)
r = 0.1 0.0777495 0.0679749 -0.0222505 0.0715239
α = 1 0.926859 0.741427 -0.0731408 0.745026
σ = 0.2 0.198181 0.0277385 -0.00181901 0.0277981

SNF (K = 2, L = 2)
r = 0.1 0.0777488 0.0679748 -0.0222512 0.071524
α = 1 0.927102 0.740485 -0.0728976 0.744065
σ = 0.2 0.198153 0.0277338 -0.00184724 0.0277952

HNF (K = 3, L = 3)
r = 0.1 0.0786614 0.0674743 -0.0213386 0.070768
α = 1 0.974696 0.760442 -0.0253043 0.760863
σ = 0.2 0.197438 0.0292659 -0.00256184 0.0293778

Euler density
r = 0.1 0.0781703 0.0682771 -0.0218297 0.0716819
α = 1 0.926857 0.741369 -0.0731432 0.744969
σ = 0.2 0.199135 0.0277254 -0.000864986 0.0277389

Nowman method
r = 0.1 0.077735 0.0679604 -0.022265 0.0715146
α = 1 0.926825 0.741334 -0.0731752 0.744937
σ = 0.2 0.1985 0.0276465 -0.00150011 0.0276871

Exact density (Feller)
r = 0.1 0.0772481 0.0674889 -0.0227519 0.0712207
α = 1 0.951478 0.734323 -0.0485223 0.735924
σ = 0.2 0.198262 0.0283593 -0.00173828 0.0284125
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Table 3: Square root model: Means and standard deviations of ML estimates in M = 100
replications. Monthly measurements of daily series (δt = 1/365 year, ∆t = 30/365 year).

monthly measurements: ∆t = 30/365, J = 12000
true values mean std bias RMSE

EKF (K = 2, L = 1)
r = 0.1 0.0925493 0.0221771 -0.00745071 0.0233952
α = 1 0.99828 0.0777926 -0.00172012 0.0778117
σ = 0.2 0.199594 0.0130801 -0.000406332 0.0130864

SNF (K = 2, L = 2)
r = 0.1 0.0925502 0.0221766 -0.00744983 0.0233944
α = 1 0.998273 0.0778161 -0.00172736 0.0778353
σ = 0.2 0.199595 0.0130841 -0.000405306 0.0130904

HNF (K = 3, L = 3)
r = 0.1 0.092583 0.0220525 -0.00741699 0.0232664
α = 1 1.00076 0.0773048 0.000759309 0.0773085
σ = 0.2 0.199235 0.0130515 -0.000764711 0.0130739

Euler density
r = 0.1 0.0929103 0.0222714 -0.00708968 0.0233726
α = 1 0.99828 0.0777806 -0.0017197 0.0777996
σ = 0.2 0.200696 0.0131158 0.000695609 0.0131342

Nowman method
r = 0.1 0.0925383 0.022167 -0.00746173 0.0233892
α = 1 0.998279 0.0777901 -0.00172131 0.0778092
σ = 0.2 0.199934 0.0130753 -0.0000664348 0.0130754

Exact density (Feller)
r = 0.1 0.0925661 0.0220893 -0.00743387 0.0233066
α = 1 1.00056 0.0771624 0.000562986 0.0771644
σ = 0.2 0.199218 0.0130542 -0.000782308 0.0130777
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Appendix: Derivation of the moment equations

The conditional density p(yt|xs) fulfils the Fokker-Planck equation

∂p(y, t|x, s)
∂t

= −∑
i

∂

∂yi
[fi(y, t)p(y, t|x, s)]

+1
2

∑
ij

∂2

∂yi∂yj
[Ωij(y, t)p(y, t|x, s)]

:= F (y, t)p(y, t|x, s)
where F is the Fokker-Planck operator. Thus the first conditional moment µ(t|ti) = E[Y (t)|Y i]
fulfils

µ̇(t|ti) = (∂/∂t)
∫
yp(y, t|yi, ti)dy

=
∫
yFp(y, t|yi, ti)dy

=
∫

(Ly)p(y, t|yi, ti)dy = E[(Ly)(Y (t))|Y i]

where L =
∑
j fj(y, t)

∂
∂yj

+ 1
2

∑
jkΩjk(y, t)

∂2

∂yj∂yk
is the backward operator. Thus we obtain

µ̇(t|ti) =
∫
f(y, t)p(y, t|yi, ti)dy = E[f(Y, t)|Y i].

Higher order moments

mk := E[Mk] := E[(Y − µ)k].

fulfil the equations (scalar notation, condition suppressed)

ṁk = (∂/∂t)
∫

(y − µ)kp(y, t)dy

= −
∫
k(y − µ)k−1µ̇p(y, t)dy +

∫
(L(y − µ)k)p(y, t)dy

= −kE[(Y − µ)k−1]E[f(Y )] + kE[f(Y ) ∗ (Y − µ)k−1]

+1
2
k(k − 1)E[Ω(Y )(Y − µ)k−2]

= kE[f(Y ) ∗ (Mk−1 −mk−1)] + 1
2
k(k − 1)E[Ω(Y ) ∗Mk−2]
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