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Abstract

Stochastic differential equations (SDE) are used as dynamical models for
cross sectional discrete time measurements (panel data). Thus causal effects
are formulated on a fundamental infinitesimal time scale. Cumulated causal
effects over the measurement interval can be expressed in terms of the fun-
damental effects which are independent of the chosen sampling intervals (e.g.
weekly, monthly, annually etc.). The nonlinear continuous-discrete filter is the
key tool in deriving a recursive sequence of time and measurement updates.
Several approximation methods including the extended Kalman filter (EKF),
higher order nonlinear filters (HNF), the unscented Kalman filter (UKF), the
Gauss-Hermite filter (GHF) and generalizations (GGHF), as well as simulated
filters (functional integral filter FIF) are compared.
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1 Introduction

Continuous time models are natural, since time is a continuously flowing quantity
without steps. On the other hand, empirical data in the social sciences and economics
are mostly available only at certain time points, e.g. daily, weekly, quarterly etc.
or at arbitrary times. Only physical quantities such as voltages, pressures, levels
of rivers etc. may be measured on a continuous base. Therefore, there has been
a tendency to formulate dynamical models in discrete time (times series and panel
analysis). Thus, the causal relations are specified between the arbitrary discrete
measurement times. Bartlett (1946) argues as follows

It will have been apparent that the discrete nature of our observations in
many economic and other time series does not reflect any lack of continuity
in the underlying series. Thus theoretically it should often prove more funda-
mental to eliminate this imposed artificiality. An unemployment index does
not cease to exist between readings, nor does Yule’s pendulum cease to swing.
(emphasis H.S.)

Indeed there are many disadvantages of discrete time models. One of the most
basic defects is that the dynamics are modeled between the (arbitrarily sampled)
measurements and not between the dynamically relevant system states. For example,
a physical system like a pendulum (cf. the citation above) fulfils a simple linear
relation (Newton’s equation) between the state and its velocity change (acceleration),
whereas the relation between sampled measurements (e.g. daily) is very complicated
and nonlinearly dependent on the parameters (mass, length of the pendulum etc.)
and the sampling interval. Moreover, the velocity cannot be measured with discrete
time data (latent variable).
Discrete time studies with different sampling intervals cannot be compared, since
the causal parameters relate to the chosen interval. Moreover, if the same data set
is analyzed with different intervals (select a weekly or monthly data set from daily
measurements), one gets estimates corresponding to these intervals which can be in
contradiction.
Nevertheless, the continuous-discrete state space model is able to combine both points
of view:

1. a continuous time dynamical model

2. discrete time (sampled) measurements.

This hybrid model first appeared in engineering (Jazwinski, 1970), but is now well
known in econometrics, sociology and psychology. One can estimate the parameters
of the continuous time model from time series or panel measurements. This is
achieved by computing the conditional probability density between the measurement
times. In the linear Gaussian case, only the time dependent conditional mean and
autocovariance is needed. More generally, in the presence of latent states and errors
of measurement, a measurement model can be defined, mapping the continuous time
state to observable discrete time data.
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2 Nonlinear state space models

Whereas the linear continuous-discrete state space model can be treated completely
and efficiently by using the Kalman filter algorithm (Harvey and Stock, 1985,
Jones and Ackerson, 1990, Jones and Boadi-Boateng, 1991, Jones, 1993,
Singer, 1993, 1995, 1998) or by structural equations models (SEM) with nonlinear
parameter restrictions (Oud and Jansen, 1996, 2000, Singer, 2006[40]), there are
many issues and competing approaches in the nonlinear field. It is presently an area
of very active research due to the growing interest in finance models. The option
price model of Black and Scholes relies on a SDE model for the underlying stock
variable and Merton’s monograph (1990) on continuous finance has been given
the field a strong ’continuous’ flavor. This is in contrast to econometrics where
still times series methods dominate and also sociology, despite the old tradition of
Bergstrom (1966), Coleman (1968) and others.
We define the nonlinear continuous-discrete state space model (Jazwinski, 1970,
ch. 6.2) for the panel units n = 1, ..., N

dyn(t) = f(yn(t), xn(t), ψ)dt+ g(yn(t), xn(t), ψ)dWn(t) (1)

zi = h(y(ti), xn(ti), ψ) + εni. (2)

with nonlinear drift and diffusion functions f and g. The xn(t) are deterministic
exogenous (control) variables. As usual, stochastic controls are treated by extending
the state yn(t) → {yn(t), xn(t)}. The dependence on xn(t) includes the nonau-
tonomous case xn(t) = t. The error terms are mutually independent Gaussian white
noise with zero means and covariance E[(dWn(t)/dt)(dWm(s)/ds)] = δ(t−s)δnm and
E[εniεmj ] = δijδnm.
Since the panel units are independent, the panel index is dropped in the sequel for
simplicity of notation. For maximum likelihood estimation, one only has to sum
the N likelihood contributions of each panel unit. Alternatively, using Bayesian
estimation, the parameter vector is filtered with the other states, and one has to use
the extended state vector η(t) = {y1(t), ..., yN(t), ψ(t)}
In the nonlinear case it is important to interpret the SDE (1) correctly. We use the
Itô interpretation yielding simple moment equations (for a thorough discussion of the
system theoretical aspects see Arnold, 1974, ch. 10, van Kampen, 1981, Singer,
1999, ch. 3). A strong simplification occurs when the state is completely measured
at times ti, i.e. zi = yi = y(ti). Then, only the transition density p(yi+1, ti+1|yi, ti)
must be computed in order to obtain the likelihood function (cf. Aı̈t-Sahalia,
2002, Singer, 2006). Unfortunately, the transition probability can be computed
analytically only in some special cases (including the linear), but in general approx-
imation methods must be employed. Since the transition density fulfils a partial
differential equation (PDE), the so called Fokker-Planck equation (cf. 6), approxi-
mation methods for PDE, e.g. finite difference methods can be used (cf. Jensen
and Poulsen, 2002).
A large class of approximations rests on linearization methods which can be applied
to the exact moment equations (extended Kalman filter EKF; second order nonlinear

3



filter SNF; cf. Jazwinski, 1970 and section 2.4) or directly to the nonlinear differ-
ential equation using Itô’s lemma (local linearization LL; Shoji and Ozaki, 1997,
1998). Since the linearity is only approximate in the vicinity of a measurement or
of a reference trajectory, the conditional Gaussian schemes are valid only for short
measurement intervals ∆ti = ti+1 − ti. Other linearization methods relate to the
diffusion term, but are interpretable in terms of the EKF (Nowman, 1997).
A different class of approximations relates to the filter density. In the unscented
Kalman filter (UKF), cf. Julier et al. (1997, 2000), the true density is replaced
by a singular density with correct first and second moment, whereas the Gaussian
filter (GF) assumes a normal density. Integrals in the update equations are obtained
using Gauss-Hermite quadrature (Ito and Xiong, 2000).
Alternatively, the Monte Carlo method can be employed to obtain approximate tran-
sition densities (Pedersen, 1995, Andersen and Lund, 1997, Elerian et al.,
2001, Singer, 2002, 2003).
More recently, Hermite expansions of the transition density have been utilized by
Aı̈t-Sahalia (2002). In this approach, the expansion coefficients are expressed
in terms of conditional moments and computed analytically by using computer al-
gebra programs. The computations comprise the multiple action of the backward
operator L on polynomials (L = F † is the adjoint of the Fokker-Planck operator
(6)). Alternatively, one can use systems of moment differential equations (Singer,
2006[39]) or numerical integration (Challa et al., 2000, Singer, 2006[37, 38]).
It seems that this approach is most efficient both in accuracy and computing time
(cf. Aı̈t-Sahalia, 2002, figure 1, Jensen and Poulsen, 2002).
Nonparametric approaches attempt to estimate the drift function f and the diffusion
function Ω without assumptions about a certain functional form. They typically
involve kernel density estimates of conditional densities (cf. Bandi and Phillips,
2001). Other approaches utilize Taylor series expansions of the drift function and
estimate the derivatives (expansion coefficients) as latent states using the LL method
(similarly to the SNF; Shoji, 2002).

2.1 Exact Continuous-Discrete Filter

The exact time and measurement updates of the continuous-discrete filter are given
by the recursive scheme (Jazwinski, 1970) for the conditional density p(y, t|Z i):1

Time update:

∂p(y, t|Z i)

∂t
= F (y, t)p(y, t|Z i) ; t ∈ [ti, ti+1] (3)

p(y, ti|Z i) := pi|i

Measurement update:

p(yi+1|Z i+1) =
p(zi+1|yi+1, Z

i)p(yi+1|Z i)

p(zi+1|Z i)
:= pi+1|i+1 (4)

1again dropping panel index n

4



p(zi+1|Z i) =
∫
p(zi+1|yi+1, Z

i)p(yi+1|Z i)dyi+1, (5)

i = 0, . . . , T − 1, where

Fp = −∑
i

∂

∂yi

[fi(y, t, ψ)p(y, t|x, s)]

+1
2

∑
ij

∂2

∂yi∂yj

[Ωij(y, t, ψ)p(y, t|x, s)] (6)

is the Fokker-Planck operator, Z i = {z(t)|t ≤ ti} are the observations up to time
ti and p(zi+1|Z i) is the likelihood function of observation zi+1. The first equation
describes the time evolution of the conditional density p(y, t|Z i) given information
up to the last measurement and the measurement update is a discontinuous change
due to new information using the Bayes formula. The above scheme is exact, but
can be solved explicitly only for the linear case where the filter density is Gaussian
with conditional moments

µ(t|ti) = E[y(t)|Z i] (7)

Σ(t|ti) = Var[y(t)|Z i]. (8)

2.2 Exact Moment Equations

Instead of solving the time update equations for the conditional density (3), the
moment equations for the first, second and higher order moments are considered.
Using the Euler approximation for the SDE (1), one obtains in a short time interval
δt (δW (t) := W (t+ δt) −W (t))

y(t+ δt) = y(t) + f(y(t), t)δt+ g(y(t), t)δW (t). (9)

Taking the expectation E[...|Z i] one gets the moment equation

µ(t+ δt|ti) = µ(t|ti) + E[f(y(t), t)|Z i]δt (10)

or in the limit δt→ 0

µ̇(t|ti) = E[f(y(t), t)|Z i]. (11)

The higher order central moments

mk(t|ti) := E[(y(t) − µ(t|ti))k|Z i] := E[Mk(t|ti)|Z i] (12)

fulfil (scalar notation, dropping the condition)

mk(t+ δt) = E[y(t) + f(y(t), t)δt− µ(t+ δt) + g(y(t), t)δW (t)]k

:= E[a + bc]k (13)

Using the binomial formula we obtain, utilizing the independence of y(t) and δW (t)

E[a+ bc]k =
k∑

j=0

(
k

j

)
E[ak−jbj ] ∗E[cj ] (14)

E[cj] =
{

(j − 1)!!δtj/2; j is even
0; j is odd

(15)

5



since odd powers of E[δW (t)]j vanish and E[δW (t)2j ] = (2j − 1)!!δtj. For example,
the second moment (variance) m2 = σ2 fulfils

E[a+ bc]2 = E[a2] + E[b2]δt (16)

= E[y(t) + f(y(t), t)δt− µ(t+ δt)]2 +

+ E[Ω(y(t), t)2]δt. (17)

Inserting the first moment (10) and setting a := α+ β = (y −E(y)) + (f −E(f))δt
one obtains

m2(t+ δt) = m2(t) + 2E[(y − E(y))(f − E(f))]δt

+ E[f −E(f)]2δt2 + E[Ω]δt (18)

In general, up to O(δt) we have (Mk := (y − µ)k)

mk(t+ δt) = E[ak] + k(k−1)
2

E[bk−2]δt+O(δt2)

= mk(t) + kE[(y −E(y))k−1(f − E(f))]δt

+ k(k−1)
2

E[(y − E(y))k−2Ω]δt+O(δt2)

= mk(t) + kE[f(y, t) ∗ (Mk−1(t) −mk−1(t))]δt

+ k(k−1)
2

E[Mk−2(t)Ω(y, t)]δt+O(δt2). (19)

The exact moment equations (11, 19) are not differential equations, since they de-
pend on the unknown conditional density p(y, t|Z i). Using Taylor expansions or
approximations of the conditional density one obtains several filter algorithms.

2.3 Continuous-discrete filtering scheme

Using only the first and second moment equation (11,18), and the optimal linear
update (normal correlation) one obtains the recursive scheme

Initial condition: t = t0

µ(t0|t0) = µ+ Cov(y0, h0) ×
× (Var(h0) + R(t0))

−(z0 − E[h0])

Σ(t0|t0) = Σ − Cov(y0, h0) ×
× (Var(h0) + R(t0))

−Cov(h0, y0)

L0 = φ(z0;E[h0],Var(h0) +R(t0))

i = 0, . . . , T − 1:
Time update: t ∈ [ti, ti+1]

τj = ti + jδt; j = 0, ..., Ji − 1 = (ti+1 − ti)/δt− 1

µ(τj+1|ti) = µ(τj|ti) + E[f(y(τj), τj)|Z i]δt

Σ(τj+1|ti) = Σ(τj |ti) +
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+ {Cov[f(y(τj), τj), y(τj)|Z i] +

+ Cov[y(τj), f(y(τj), τj)|Z i] +

+ E[Ω(y(τj), τj)|Z i]}δt

Measurement update: t = ti+1

µ(ti+1|ti+1) = µ(ti+1|ti) + Cov(yi+1, hi+1|Z i) ×
× (Var(hi+1|Z i) +R(ti+1))

−(zi+1 − E[hi+1|Z i])

Σ(ti+1|ti+1) = Σ(ti+1|ti) − Cov(yi+1, hi+1|Z i) ×
× (Var(hi+1|Z i) +R(ti+1))

−Cov(hi+1, yi+1|Z i)

Li+1 = φ(zi+1;E[hi+1|Z i],Var(hi+1|Z i) +R(ti+1)).

Remarks:

1. The time update for the interval t ∈ [ti, ti+1] was written using time slices of
width δt. They must be chosen small enough to yield a good approximation
for the moment equations (11, 18).

2. The measurement update is written using the theorem on normal correlation
(Liptser and Shiryayev, 1978, ch. 13, theorem 13.1, lemma 14.1)

µ(ti+1|ti+1) = µ(ti+1|ti) + Cov(yi+1, zi+1|Z i)Var(zi+1|Z i)− ×
× (zi+1 −E[zi+1|Z i]) (20)

Σ(ti+1|ti+1) = Σ(ti+1|ti) − Cov(yi+1, zi+1|Z i)Var(zi+1|Z i)− ×
× Cov(zi+1, yi+1|Z i). (21)

Inserting the measurement equation (2) one obtains the measurement update
of the filter. The formula is exact for Gaussian variables and the optimal linear
estimate for µ(ti+1|ti+1), Σ(ti+1|ti+1) in the nongaussian case. It is natural to
use, if only two moments are considered. Despite the linearity in zi+1, it still
contains the measurement nonlinearities in the expectations involving h(y, t).
Alternatively, the the Bayes formula (4) can be evaluated directly. This is
necessary, if strongly nonlinear measurements are taken (e.g. the threshold
mechanism for ordinal data; see sect. 7)

The approximation of the expectation values containing the unknown filter density
leads to several well known algorithms:

1. Taylor expansion of f,Ω and h:

extended Kalman filter EKF, second order nonlinear filter SNF, higher order
nonlinear filter HNF(2, L) (Jazwinski, 1970, Singer, 2006[39]). Direct lin-
earization in the SDE (1) using the Itô formula yields the LL approach of
Shoji and Ozaki (1997, 1998); cf. Singer (2002).

7



2. Approximation of the expectations using sigma points:

Unscented Kalman filter UKF (Julier et al., 1997, 2000).

3. Approximation of the expectations using Gauss-Hermite quadrature:

Gauss-Hermite filter GHF (Ito and Xiong, 2000).

3 Filter Approximations

based on Taylor Expansion

3.1 Extended Kalman Filter EKF

Using Taylor expansions around the conditional mean µ(τj|ti) for the nonlinear func-
tions in the filtering scheme, one obtains

E[f(y(τj), τj)|Z i] ≈ f(µ(τj|ti), τj) (22)

Cov[f(y(τj), τj), y(τj)|Z i] ≈ fy(µ(τj |ti), τj)Σ(τj |ti) (23)

E[Ω(y(τj), τj)|Z i] ≈ Ω(µ(τj |ti), τj). (24)

Expanding around µ(ti+1|ti) the measurement update is approximately

Cov[yi+1, hi+1|Z i] ≈ Σ(ti+1|ti)h′y(µ(ti+1|ti), ti+1) (25)

Var[hi+1|Z i] ≈ hy(µ(ti+1|ti), ti+1)Σ(ti+1|ti) ×
× h′y(µ(ti+1|ti), ti+1) (26)

E[hi+1|Z i] ≈ h(µ(ti+1|ti), ti+1). (27)

3.2 Second Order Nonlinear Filter SNF

Expanding up to second order one obtains (using short notation and dropping third
moments)

E[f(y(τj), τj)|Z i] ≈ f(µ(τj|ti), τj) +

+ 1
2
fyy(µ(τj|ti), τj) ∗Σ(τj |ti) (28)

Cov[f(y(τj), τj), y(τj)|Z i] ≈ fy(µ(τj |ti), τj)Σ(τj |ti) (29)

E[Ω(y(τj), τj)|Z i] ≈ Ω(µ(τj |ti), τj) +

+ 1
2
Ωyy(µ(τj |ti)) ∗Σ(τj |ti). (30)

Cov[yi+1, hi+1|Z i] ≈ Σ(ti+1|ti)h′y(µ(ti+1|ti), ti+1) (31)

Var[hi+1|Z i] ≈ hy(µ(ti+1|ti), ti+1)Σ(ti+1|ti) ×
× h′y(µ(ti+1|ti), ti+1) (32)

E[hi+1|Z i] ≈ h(µ(ti+1|ti), ti+1) +

+ 1
2
hyy(µ(ti+1|ti), ti+1) ∗Σ(ti+1|ti), (33)
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where (fyy ∗ Σ)i =
∑

jk fyy,ijk ∗ Σjk etc. Expanding to higher orders in the HNF
(higher order nonlinear filter) yields moments of order k > 2 on the right hand
side, which must be dropped or factorized by the Gaussian assumption mk = (k −
1)!!m

k/2
2 , k even, mk = 0, k odd. For details, see Jazwinski (1970) or Singer

(2006[39]).

3.3 Local linearization LL

A related algorithm occurs if the drift is expanded directly in SDE (1). Using Itô’s
lemma one obtains

f(y(t), t) − f(y(ti), ti) =

=
∫ t

ti
fy(y(s), s)dy(s) +

+
∫ t

ti

1
2
fyy(y(s), s) ∗Ω(y(s), s)ds+

∫ t

ti
ft(y(s), s)ds. (34)

Freezing the coefficients at (yi, ti) and using a state independent diffusion coefficient
Ω(s), Shoji and Ozaki obtained the linearized SDE (ti ≤ t ≤ ti+1)

dy(t) = [fy(yi, ti)(y(t) − yi) + f(yi, ti) + ft(yi, ti)(t− ti) +

+1
2
fyy(yi, ti) ∗Ω(ti)(t− ti)]dt+ g(t)dW (t).

The corresponding moment equations are

µ̇(t|ti) = fy(yi, ti)(y(t|ti) − yi) + f(yi, ti) + ft(yi, ti))(t− ti) +

+1
2
fyy(yi, ti) ∗Ω(ti)(t− ti) (35)

Σ̇(t|ti) = fy(yi, ti)Σ(t|ti) +Σ(t|ti)f ′
y(yi, ti) +Ω(ti). (36)

By contrast to the EKF and SNF moment equations which is a system of nonlinear
differential equations, the Jacobians are evaluated once at the measurements (yi, ti)
and the differential equations are linear and not coupled (for details, cf. Singer,
2002).

4 Filter Approximations

based on Numerical Integration

The traditional way of nonlinear filtering has been the expansion of the system
functions f , Ω and h. Another approach is the approximation of the filtering density
p(y|Z i).

4.1 Unscented Kalman Filtering

The idea of Julier et al. was the definition of so called sigma points with the prop-
erty that the weighted mean and variance over these points coincides with the true
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parameters. According to Julier et al. (2000) one can take the 2p+ 1 points

x0 = µ (37)

xl = µ+
√
p+ κΓ.l, l = 1, ..., p (38)

x−l = µ−√
p + κΓ.l, l = 1, ..., p (39)

with weights

α0 = κ/(p+ κ) (40)

αl = 1/(2(p+ κ)) = α−l, (41)

where Γ.l is the lth column of the Cholesky root Σ = ΓΓ ′, κ is a scaling factor and p
is the dimension of the random vector X. For example, in the univariate case p = 1
one obtains the three points µ, µ±√

1 + κ σ.
The UT method may be interpreted in terms of the singular density

pUT (x) =
p∑

l=−p

αlδ(x− xl). (42)

Then, however, only nonnegative weights αl are admissible. Generally, the expecta-
tion EUT [X] =

∫
x pUT (x)dx = µ and

VarUT (X) =
∫

(x− µ)(x− µ)′pUT (x)dx (43)

=
p∑

l=−p

(xl − µ)(xl − µ)αl (44)

=
p∑

l=1

Γ.l(Γ.l)
′ = ΓΓ ′ = Σ (45)

yields the correct first and second moment. Nonlinear expectations are easily eval-
uated as sums

EUT [f(X)] =
∫
f(x)pUT (x)dx (46)

=
∑

l

f(xl)αl (47)

=
κ

p+ κ
f(µ) +

1

2(p+ κ)

p∑
l=−p,p �=0

f(xl) (48)

Using large κ, the EKF formula ETaylor[f(X)] = f(µ) is recovered.
All expectations in the filter are evaluated using the sigma points computed from the
conditional moments µ(τj |ti), Σ(τj |ti). To display the dependence on the moments,
the notation yl = yl(µ,Σ) will be used. For example, the terms in the time update
are (short notation dropping arguments)

E[f |Z i] ≈ ∑
l

f(yl)αl (49)

Cov[f, y|Z i] = E[f(y)(y − µ)|Z i] ≈∑
l

f(yl)(yl − µ)αl (50)

E[Ω|Z i] ≈ ∑
l

Ω(yl)αl (51)
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with sigma points yl = yl(µ(τj |ti), τj), Σ(τj |ti)). With the new moments µ(τj+1|ti),
Σ(τj |ti) updated sigma points are computed.

4.2 Gauss-Hermite Filtering

For the Gaussian filter, one may assume that the true p(x) is approximated by a
Gaussian distribution φ(x;µ, σ2) with the same mean µ and variance σ2. Then, the
Gaussian integral

Eφ[f(X)] =
∫
f(x)φ(x;µ, σ2)dx =

∫
f(µ+ σz)φ(z; 0, 1)dz (52)

≈
m∑

l=1

f(µ+ σζl)wl =
m∑

l=1

f(ξl)wl (53)

may be approximated by Gauss-Hermite quadrature (cf. Ito and Xiong, 2000).
The ζl, wl are quadrature points and weights for the standard gaussian distribution
φ(z; 0, 1). If such an approximation is used, one obtains the Gauss-Hermite filter
(GHF). Generally, filters using Gaussian densities are called Gaussian filters (GF).
The GHF can be interpreted in terms of the singular density pGH(x) =

∑m
l=1wlδ(x−

ξl) concentrated at the quadrature points ξl. The Gauss-Hermite quadrature rule is
exact up to order O(x2m−1). Multivariate Gaussian integrals can be computed by
transforming to the standard normal distribution and p-fold application of (52).
The Gaussian filter is equivalent to an expansion of f to higher orders L

E[f(X)] ≈
L∑

l=0

1
l!
f l(µ)E[X − µ]l =

L∑
l=0

1
l!
f l(µ)ml (54)

(higher order nonlinear filter HNF(2, L)) and factorization of the moments according
to the Gaussian assumption ml := E[X − µ]l = (l − 1)!!σl (l even) and ml = 0 (l
odd). This leads to an exact computation of (52) for L → ∞. In this limit, the
HNF and GF coincide. In the EKF=HNF(2,1) and SNF=HNF(2,2), the higher
order corrections are neglected. Also, third and higher order moments could be used
(HNF(K,L); cf. Singer, 2006[39]).
It is interesting that κ = 2, p = 1 in the UT corresponds to a Gauss-Hermite rule
with m = 3 sample points (Ito and Xiong, 2000).

4.3 Generalized Gauss-Hermite Filtering

The Gaussian filter assumed a Gauss density φ(y;µ, σ2) for the filter distribution
p(y). More generally, one can use a Hermite expansion

p(y) = φ(y;µ, σ2)
K∑

n=0

cnHn((y − µ)/σ) = φ(y) ∗H(y,K), (55)

with Fourier coefficients c0 = 1, c1 = 0, c2 = 0,

c3 := (1/3!)E[Z3] = (1/3!)ν3 (56)

c4 := (1/4!)E[Z4 − 6Z2 + 3] = (1/24)(ν4 − 3), (57)
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Z := (Y − µ)/σ and orthogonal polynomials H0 = 1, H1 = x,H2 = y2 − 1, H3 =
y3 − 3y,H4 = y4 − 6y2 +3 etc. Expectation values occuring in the update equations
are again computed by Gauss-Hermite integration, including the nongaussian term

H(y; {µ,m2, ..., mK}) :=
K∑

n=0

cnHn((y − µ)/σ). (58)

Since H(y; {µ,m2, ..., mK}) depends on higher order moments, one must use K mo-
ments equations (19). The choice K = 2 recovers the usual Gaussian filter, since
c0 = 1, c1 = 0, c2 = 0. The Hermite expansion can model bimodal, skewed and
leptokurtic distributions. For details, see Singer (2006[39, 38]) and sect. 7.

5 Discussion

1. The density based filters UKF and GHF have the strong advantage, that no
derivatives of the system functions must be computed. This is no problem
for the EKF and SNF, but for higher orders in the HNF(K,L) complicated
tensor expressions arise. Moreover, higher order moments must be dropped or
factorized in order to obtain closed equations. In the multivariate case, the
formulas for Gaussian moments are involved. The fourth moment is

m4,ijkl = σijσkl + σikσjl + σilσjk. (59)

For a general formula, see Gardiner, 1996, p. 36.

2. Apart from an implementation point of view (see 1.), the low order EKF
and SNF suffer from problems such as filter divergencies, especially when the
sampling intervals are large. Simulation studies suggest, that the UKF and
GHF are more stable and yield smaller filtering error in the mean (Singer,
2006[37]).

3. The moment equations and measurement updates as derived in section (2.3)
involve expectations with respect to the filter density p(y), but not for the noise
processes. Their statistics are already included in these updates (the terms
E[Ω]dt = E[gdW (gdW )′] and R = Var(ε) stem from the noise sequences).
Thus no sigma points w.r.t the noises must be computed, as suggested in the
literature on the UKF (Julier et al., loc. cit., Sitz et al., 2002). This is
only necessary if the system is first modeled deterministically and afterwards
extended by the noises. This is neither necessary nor efficient.

6 Example: Bifurcation System

The several filtering algorithms can be used to compute the likelihood for each
panel unit and the sum of all likelihood contributions is maximized. We study the
nonlinear system

dyn = −[αyn + βy3
n]dt+ σdWn(t) (60)
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with measurement equation

zin = yin + εin, (61)

n = 1, ..., N = 10, measured at times ti ∈ {0, 4, 6, 8, 10, 11, 12, 13.5, 13.7, 15, 15.1, 17,
19, 20}. The measurement times could be different for each panel unit. The random
initial condition was yn(t0) ∼ N(0, 10). The nonlinear drift f(y) = −[αy + βy3] is
the negative gradient of a potential Φ(y) = 1

2
αy2 + 1

4
βy4 and the motion may be

visualized as a Brownian motion in the landscape defined by Φ(y) (fig. 1). The
stationary density is given by pstat ∝ exp(−(2/σ2)Φ(y)) (fig. 2). For β > 0, the
potential can have two minima and one maximum (α < 0 or one minimum (α ≥ 0).
Such a qualitative change following a continuous variation of a parameter is called
a bifurcation (fig. 3).
The model is interesting from both a theoretical and an application point of view:
The density function strongly deviates from Gaussian behavior, at least in the bi-
modal state α < 0. Thus it is a good test for filters relying on only two moments.
For applications, it can model systems with two stable states with a sudden transi-
tion to only one equilibrum. It has been used for phase transitions (Ginzburg and
Landau; cf. Haken, 1977, chs. 6.4, 6.7-8), stability of engineering systems (Frey,
1996) and equilibrium states in economics (Herings, 1996). Fig. 4 shows the
true trajectory, the measurements and approximate 67% HPD (highest probability
density) confidence intervals (conditional mean ± standard deviation) for all panel
units n = 1, ..., 10 using the UKF(κ = 2) = GHF(m = 3) and the true parameter
vector θ = {−1, 0.1, 2, 1}. Fig. 5 displays the true trajectory, the measurements and
67% HPD confidence intervals for panel unit n = 10 using the true parameter vector.
It can be shown that some algorithms such as the SNF exhibit divergencies in the
first measurement interval [0,4] when the conditional mean approaches zero. Simu-
lation studies demonstrate, that the EKF, SNF and LL are prone to such numerical
instabilities (cf. Singer, 2006[37]). Higher order expansion of the drift can avoid
such singularities. As noted, the Gaussian filter corresponds to an infinite Taylor
expansion with Gaussian factorization of the moments (cf. eqn. 54). Generally, the
density based UKF and GHF are numerically more stable than EKF and SNF and
lead to smaller filtering error.
The performance of the several filters was compared in a simulation study (see table
(1), where the maximum likelihood (ML) estimates were computed for M = 100
replications and N = 10 panel units. The likelihood was maximized using a quasi
Newton algorithm with numerical score function and BFGS secant updates (Dennis
and Schnabel, 1983). In terms of RMSE, the several algorithms are comparable.
There is a tradeoff between bias and variance of the estimates. For example, the
estimates for α in the Taylor based methods EKF, SNF and LL are strongly biased,
but the standard deviation is smaller than for the density based algorithms. However,
due to the long sampling intervals, EKF, SNF and LL tend to diverge, and large
conditional means |µ(t|Z i)| > YMAX = 1000 were reset to zero. Over all, there is
no algorithm with clear advantages, although UKF and GHF are more stable. The
UKF furthermore has the problem of choosing the scaling paramter κ. It seems, in
this example, that κ = 0 yields the smallest RMSE, whereas the bias is minimized
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Figure 1: Potential Φ(y) as a function of y for several parameter values α =
−3,−2, ..., 1.

-10 -5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

Figure 2: Stationary density pstat ∝ exp[−(2/σ2)Φ(y)] as a function of y for several
parameter values α = −3,−2, ..., 1.
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Figure 3: Minima and maxima of Φ(y) as a function of α (bifurcation diagram).
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Figure 4: UKF(κ = 2) = GHF(m = 3) for all N = 10 panel units. True trajectory,
measurements (dots), and 67% HPD band.
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Figure 5: Panel unit n = 10: Comparision of several filter algorithms
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EKF, M ′ = 100
parameter value mean std bias RMSE

α -1. -0.254169 0.413799 0.745831 0.852932
β 0.1 0.0658808 0.0730564 -0.0341192 0.080631
σ 2. 2.01777 0.638036 0.017767 0.638283
R 1. 0.951857 0.444057 -0.0481435 0.446659

SNF, M ′ = 84
parameter value mean std bias RMSE

α -1. -0.119926 0.0953236 0.880074 0.885222
β 0.1 0.0231572 0.00795955 -0.0768428 0.0772539
σ 2. 1.46765 0.215205 -0.53235 0.574203
R 1. 1.1505 0.399459 0.150497 0.426869

LL, M ′ = 65
parameter value mean std bias RMSE

α -1. -0.0885385 0.117338 0.911461 0.918983
β 0.1 0.0163748 0.00790206 -0.0836252 0.0839977
σ 2. 1.48073 0.246138 -0.519273 0.574655
R 1. 1.25062 0.370842 0.250619 0.447586

UKF, κ = 0,M ′ = 99
parameter value mean std bias RMSE

α -1. -0.712736 0.95255 0.287264 0.994923
β 0.1 0.076122 0.0853785 -0.023878 0.0886547
σ 2. 1.79875 0.403944 -0.201246 0.451299
R 1. 1.07417 0.442 0.0741727 0.44818

UKF, κ = 1,M ′ = 96
parameter value mean std bias RMSE

α -1. -1.09344 1.00893 -0.0934443 1.01325
β 0.1 0.102081 0.086685 0.0020806 0.08671
σ 2. 2.11663 0.439907 0.116632 0.455106
R 1. 0.984557 0.450917 -0.0154427 0.451182

UKF, κ = 2,M ′ = 93
parameter value mean std bias RMSE

α -1. -1.51408 1.19571 -0.514084 1.30154
β 0.1 0.124142 0.0898191 0.024142 0.093007
σ 2. 2.46263 0.489341 0.462625 0.673407
R 1. 0.873614 0.437204 -0.126386 0.455105

GHF, m = 4,M ′ = 96
parameter value mean std bias RMSE

α -1. -1.4521 1.14993 -0.4521 1.23561
β 0.1 0.122561 0.0894279 0.0225606 0.0922298
σ 2. 2.39497 0.440323 0.394971 0.591511
R 1. 0.891953 0.433076 -0.108047 0.446351

Table 1: Simulation study for bifurcation model. Distribution of ML estimates in M =
100 replications. M ′=number of converged samples.
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Figure 6: Panel unit n = 10: Latent trajectory (green) and ordinal measurements (blue)
with thresholds {c1, c2} = {−2, 2}. The values of z(t) are -1,0,1.

for κ = 1.

7 Example: Ordinal measurements

The nonlinear state space model (1–2) is flexible enough to model ordinal measure-
ments via the threshold model

z = z0 +
L∑

l=1

θ(y − cl) + ε := h(y) + ε (62)

where θ is the Heaviside step function and cl are thresholds contained in the parame-
ter vector ψ. The variance of the measurement error R = Var(ε) is taken small (10−6

here), so that the measurement density p(z|y) = φ(z; z0 +
∑

l θ(y − cl), R) is pro-
portional to the indicator function χh−1(z)(y). Now the measurements are strongly
nonlinear and the a posteriori density is proportional to the a priori density truncated
by the windows Cl = (cl, cl+1] defined from the thresholds c = {−∞, c1, ..., cL,∞}.
Fig. 6 shows the trajectory of panel unit n = 10 together with the thresholds
c = {c1, c2} = {−2, 2} and the ordinal data z(t) ∈ {−1, 0, 1} (setting z0 = −1). The
data were filtered using the generalized Gauss-Hermite filter GGHF comparing the
normal correlation and the Bayes update. As explained in sect. 4.3, the filter density
is represented by the Hermite expansion φ(y;µ, σ2)H(y, k) and the measurement up-
date is obtained either by the normal correlation (20) or by the Bayes formula (4).
In both cases, Gauss-Hermite integration can be used. Denoting the linear estimates
(20) by µ0 and Σ0, the normal correlation update is given by the product

p(y|z) ≈ L0 φ(y;µ0, Σ0)H(y; {µ,m2..., mK})/L (63)

L = L0

∫
φ(y;µ0, Σ0)H(y; {µ,m2..., mK})dy (64)

L0 = φ(z;E[h],Var(h) +R) (65)
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In the equations above, the posteriori distribution is nongaussian due to the Her-
mite part H(y; {µ,m2..., mK}), where {µ,m2..., mK} are the apriori moments. For
strongly nonlinear measurements, the Bayes formula yields

p(y|z) = φ(z; h(y), R)φ(y;µ, σ2)H(y; {µ,m2..., mK})/L (66)

L =
∫
φ(z; h(y), R)φ(y;µ, σ2)H(y; {µ,m2..., mK})dy (67)

The likelihood integral is over the a priori Gauss part φ(y;µ, σ2), but the efficiency
can be improved by integrating over the normal correlation update φ(y;µ0, Σ0) (anal-
ogously to importance sampling). Figures (7–8) compare the updates in the case
K = 2 (Gaussian filter). The densities are always Gaussian, but the a posteriori
moments are either the linear estimates or are computed using the Bayes formula.
The latter method yields better updates which more closely approximate the trun-
cated Gaussian a posteriori densities. Note that the measurement density p(z|y) was
scaled by 10−3 in the graphics.
Using more terms (e.g. K = 20) in the Hermite expansion yields a more realistic
modeling of the bimodal a priori density (figs. 9–10). Note that the normal corre-
lation update is nongaussian as well, due to the Hermite term H(y). In some cases
the Bayes update tends to unrealistic oscillations in the a posteriori density. This is
due to locally negative values of the Hermite series.

8 Conclusion

We compared filtering algorithms for nonlinear panel models in continuous time
with time discrete measurements. The classical algorithms EKF and SNF are based
on Taylor expansions of the moment equations. In contrast, UKF and GHF use
numerical integration for the expectation values. The UT transformation is directly
applied to the moment equations avoiding the extension of the system state and
doubling the dimension. ML estimation of a Ginzburg-Landau model did not yield
a uniformly best method, but in terms of bias, the UKF with κ = 1 was best. Finally,
ordinal data were treated using a threshold model using the GHF and the GGHF
(K = 20). The Bayes update is superior to the linear normal correlation. Since the
measurement function is not differentiable, the EKF type algorithms cannot be used
here. The Hermite expansion yields a more realistic approximation of the truncated
a posteriori density, but already the Gaussian case K = 2 leads to sufficient results.
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GGHF, K=2, m=200, Normal Correlation
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Figure 7: GGHF: Measurement updates of threshold model. Normal correlation, K = 2
( = GHF). A priori (red), a posteriori (orange) and measurement density p(z|y) (green).
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GGHF, K=2, m=200, Bayes
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Figure 8: GGHF: Measurement updates of threshold model. Bayes formula, K = 2 ( =
GHF). Note that the update yields a better approximation of p(y|z). A priori (red), a
posteriori (orange) and measurement density p(z|y) (green).
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GGHF, K=20, m=200, Normal Correlation
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Figure 9: GGHF: Measurement updates of threshold model. Normal correlation, K = 20
( = GHF). A priori (red), a posteriori (orange) and measurement density p(z|y) (green).
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GGHF, K=20, m=200, Bayes

-10 -5 0 5 10

0

0.2

0.4

0.6

0.8

1
t=19.

-10 -5 0 5 10

0

0.2

0.4

0.6

0.8

1
t=20.

-10 -5 0 5 10

0

0.2

0.4

0.6

0.8

1
t=15.1

-10 -5 0 5 10

0

0.2

0.4

0.6

0.8

1
t=17.

-10 -5 0 5 10

0

0.2

0.4

0.6

0.8

1
t=13.7

-10 -5 0 5 10

0

0.2

0.4

0.6

0.8

1
t=15.

-10 -5 0 5 10

0

0.2

0.4

0.6

0.8

1
t=12.

-10 -5 0 5 10

0

0.2

0.4

0.6

0.8

1
t=13.5

-10 -5 0 5 10

0

0.2

0.4

0.6

0.8

1
t=10.

-10 -5 0 5 10

0

0.2

0.4

0.6

0.8

1
t=11.

-10 -5 0 5 10

0

0.2

0.4

0.6

0.8

1
t=6.

-10 -5 0 5 10

0

0.2

0.4

0.6

0.8

1
t=8.

-10 -5 0 5 10

0

0.2

0.4

0.6

0.8

1
t=0

-10 -5 0 5 10

0

0.2

0.4

0.6

0.8

1
t=4.

Figure 10: GGHF: Measurement updates of threshold model. Bayes formula, K = 20.
A priori (red), a posteriori (orange) and measurement density p(z|y) (green). Oscillation
at t = 13.7 (see text).
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