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This article gives a short review of key issues and of existing estimation methods in differen-
tial equation modeling. It covers both linear and nonlinear stochastic differential equations
(SDE) and continuous-discrete statespace models including panel data.
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1 INTRODUCTION

Differential equations are the continuous time analog of time series models, i.e. the state
vector Y (t) is a function of the real parameter t (time) and the desired time function is given
in terms of time derivatives. For example, the simple growth model

dY (t)/dt = λY (t) (1)

states, that the time change of Y (t) in the interval [t, t+ dt] is proportional to the state at
this time point. Examples are the growth of populations or the attenuation of radioactive
rays in media (λ < 0). The solution of (1) with initial condition Y (t0) is given by

Y (t) = exp[λ(t− t0)]Y (t0) (2)

which can be verified by computing the derivative. In a social science context, the simple
deterministic equation must be extended by stochastic equation errors which model neglected
variables and misspecifications in the functional form of the differential equation. A linear
specification is given by the stochastic differential equation (SDE)

dY (t)/dt = λY (t) + gζ(t) (3)

∗Lehrstuhl für angewandte Statistik und Methoden der empirischen Sozialforschung, D-58084 Hagen,
Germany, Hermann.Singer@FernUni-Hagen.de

1



where ζ(t) is a zero mean Gaussian white noise process with autocorrelation γ(t − s) =
E[ζ(t)ζ(s)] = δ(t − s) (Dirac delta function). This means, that the noise process is only
autocorrelated for very short time spans. The solution of (3) is given by

Y (t) = exp[λ(t− t0)]Y (t0) +
∫ t

t0
exp(λ(t− s))gζ(s)ds. (4)

Since the continuous time white noise process is a generalized function (cf. Arnold, 1973,
ch. 3), the solution is usually written by the replacement ζ(s)ds = dW (s), where W (s) is
the Wiener process, a continuous, but not differentiable process (cf. Arnold, ch. 4). Thus,
in order to avoid derivatives of nondifferentiable processes, one writes

dY (t) = λY (t)dt+ gdW (t) (5)

Y (t) = exp[λ(t− t0)]Y (t0) +
∫ t

t0
exp[λ(t− s)]gdW (s). (6)

and interpretes the first equation as an integral equation. This is the so called Itô calculus,
which is a well defined method for the treatment of stochastic differential equations (cf.
Arnold, 1973). From the explicit solution (6) it is seen that the solution process is Gaussian
if the initial condition is Gaussian or constant as well.
In the context of parameter estimation it is helpful to write the solution as a time series
(exact discrete model)

Yi+1 = exp[λ(ti+1 − ti)]Yi +
∫ ti+1

ti
exp[λ(ti+1 − s)]gdW (s), (7)

Yi = Y (ti), or more concise as

Yi+1 = Φ(ti+1, ti)Yi + ui, (8)

where Φ is the fundamental matrix, but it should be noted that the parameters of the AR(1)
model are highly nonlinearly restricted (e.g. Var(ui) =

∫
Φ(ti+1, s)

2g2ds).
This is the main problem for the task of parameter estimation. Software must be able to
implement the required restrictions, especially in the multivariate case where time ordered
matrix exponentials are involved (some references are Phillips, 1976, Hamerle et al., 1991,
1993, Singer, 1998).

2 LINEAR CONTINUOUS/DISCRETE

STATE SPACE MODELS

In order to incorporate higher order derivatives and errors of measurement, the general
linear continuous/discrete state space model

dY (t) = [A(t, ψ)Y (t) + b(t, ψ)]dt+G(t, ψ)dW (t) (9)

Zi = H(ti, ψ)Y (ti) + d(ti, ψ) + εi (10)
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is introduced. In the state equation (9), W (t) denotes a r-dimensional Wiener process
and the state is described by the p-dimensional state vector Y (t). It fulfils a system of
stochastic differential equations in the sense of Itô (cf. Arnold, 1974) The measurement
error εi ∼ N(0, R(ti, ψ) is discrete time white noise.
Parametric estimation is based on the u-dimensional parameter vector ψ and the time de-
pendence t also incorporates deterministic regressor variables x(t). Moreover, panel data
may be treated by joining a panel index n, n = 1, ..., N (cf. Singer, 1998).
The state equation (9) may be solved for the times of measurement ti and the likelihood
function can be computed recursively by means of the Kalman filter algorithm (Liptser
and Shiryaev, 1977, 2001, Harvey and Stock, 1985, Singer, 1998). The computation pro-
ceeds in steps of time updates and measurement updates involving the conditional moments
µ(t|ti) = E[Y (t)|Z i] and Σ(t|ti) = Var[Y (t)|Z i], where Z i = {Zi, ..., Z0} are the measure-
ments up to time ti. The time updates fulfil (t ∈ [ti, ti+1])

(d/dt)µ(t|ti) = A(t, ψ)µ(t|ti) + b(t, ψ) (11)

(d/dt)Σ(t|ti) = A(t, ψ)Σ(t|ti) +Σ(t|ti)A′(t, ψ) +Ω(t, ψ) (12)

where Ω(t, ψ) = GG′(t, ψ) is the diffusion matrix. At the measurement times, the time
update (optimal prediction) is corrected by the measurement Zi+1 using the Bayes formula

µ(ti+1|ti+1) = µ(ti+1|ti) +K(ti+1|ti)ν(ti+1|ti) (13)

Σ(ti+1|ti+1) = [I −K(ti+1|ti)H(ti+1, ψ)]Σ(ti+1|ti) (14)

ν(ti+1|ti) = Zi+1 − Z(ti+1|ti) (15)

Z(ti+1|ti) = H(ti+1, ψ)µ(ti+1|ti) + d(ti+1, ψ) (16)

Γ (ti+1|ti) = H(ti+1, ψ)Σ(ti+1|ti)H ′(ti+1, ψ) +R(ti+1, ψ) (17)

K(ti+1|ti) := Σ(ti+1|ti)H ′(ti+1, ψ)Γ (ti+1|ti)−1 (18)

where K(ti+1|ti) is the Kalman gain, Z(ti+1|ti) = H(ti+1, ψ)µ(ti+1|ti) + d(ti+1, ψ) is the
optimal predictor of the measurement Zi+1, ν(ti+1|ti) is the prediction error and Γ (ti+1|ti)
is the prediction error covariance matrix. Fortunately, the updated state Y (ti+1)|Z i+1

is again conditionally Gaussian and one can proceed with two conditional moments. After
T steps one obtains the likelihood

l(ψ;Z) = log p(ZT , . . . , Z0;ψ) =
T−1∑
i=0

log p(Zi+1|Z i;ψ)p(Z0), (19)

where the transition densities are given in terms of the Gauss distributions

p(Zi+1|Z i;ψ) = φ(ν(ti+1|ti); 0, Γ (ti+1|ti)). (20)

Thus the Kalman filter computes the likelihood recursively in terms of predictions, prediction
errors and their conditional variance (cf. Jazwinski, 1970).
It should be noted that the system matrices may also depend on earlier measurements
(i.e. A(t) = A(t, Z i), ti ≤ t, H(ti) = H(ti, Z

i−1) etc., but the distributions in the filter
are still conditionally Gaussian if Y (t0)|Z(t0) is such (cf. Liptser and Shiryaev, 2001, ch.
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Figure 1: Linear oszillator with irregulary measured states: Filtered state (left), smoothed
state (right). Measurements at τ1 = {0, .5, 1, 2, 4, 5, 7, 7.5, 8, 8.5, 9, 9.1, 9.2, 9.3, 10}, τ2 =
{0, 1.5, 7, 9}.

13). Thus, although the latent states may be not Gaussian due to the Z-dependence, the
conditionally Gaussian filtering scheme is still valid. For example, the diffusion matrix G(t)
may contain delayed prediction errors G(t, ν(ti|ti−1), ...) and thus ARCH and GARCH effects
in a continuous time model.
The state space model is very general and allows the specification of models with higher
order derivatives where only the first component is measured at sampling times ti. It should
be noted that no approximation whatsoever is involved. For example, the CAR(2) process
ÿ + γẏ + ω2

0y = gζ(t) has state space representation

d
[
y1(t)
y2(t)

]
:=

[
0 1

−ω2
0 −γ

][
y1(t)
y2(t)

]
dt+

[
0 0
0 g

]
d
[
W1(t)
W2(t)

]
(21)

zi := [ 1 0 ]
[
y1(ti)
y2(ti)

]
+ εi (22)

and there is no need to approximate differentials by finite differences etc. The
unobservable derivative y2 = ẏ is reconstructed by the filter as E[y2(t)|ZT ] (smoothed,
filtered or predicted state depending on time t) (Singer, 1993). Approximating the derivatives
by finite differences introduces unnecessary specification error and biased estimates. Figure
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1 shows the true, filtered and smoothed trajectories of a irregularly sampled oscillator (cf.
Singer, 1995) and 95% HPD confidence intervals.
At present it may be stated that the linear state space model is completely solved
and may be estimated efficiently by the Kalman filter algorithm. This works with
only one trajectory and/or with panel data. One only has to sum up the N likelihood
contributions. References are Jones and Ackerson (1990), Singer (1995, 1998).
It may be the case that some nonlinear SEM software is able to incorporate (in some special
cases) the nonlinear restrictions as created by the moment equations (11,12)(cf. Oud and
Jansen, 2000), but in general special software with direct implementation of the Kalman
filter (KF) is preferrable. The KF is the recursive, most direct and efficient implementation
of the continuous/discrete state space model.
For example, the time dependent model of growth rates with constant part

A0 =
[
λ11 λ12

λ21 λ22

]
(23)

and a linearly changing part

A1(t) =
[
α t 0
0 β t

]
. (24)

yields a drift matrix A(t) = A0 + A1(t). Since A(t) does not commute with A(s), i.e.
A(t)A(s) − A(s)A(t) �= 0, the state transition matrix fulfilling the equation

(d/dt)Φ(t|ti) = A(t, ψ)Φ(t|ti) (25)

is not simply given by

Φ(t|ti) = exp[
∫ t

ti
A(s, ψ)ds] (26)

but by the time ordered expression

Φ(t|ti) =
←
T exp[

∫ t

ti
A(s, ψ)ds] (27)

where
←
T A(t)A(s) = A(s)A(t); t < s is the Wick time ordering operator. Using the moment

equations (11,12) with a respective numerical approximation (Euler- or higher order Runge-
Kutta scheme) does automatically produce the time ordered expressions. This is the crucial
step each candidate software package must take in order to implement the correct parameter
functionals (for details see Singer, 1998).

Other issues

In economics many variables (such as gross national product) are cumulated or averaged over
certain period of time. These so called flow data can be naturally modelled by differential
equations if additional derivatives are included in the state space model which generate
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integrated measurements (cf. Bergstrom, 1984, Singer, 1995). Then, the dynamics are
between stocks and latent differentiated flows, but only integrated measurements are needed.
Often, missing data occur in panel designs or data are measured at arbitrary frequen-
cies. Sometimes, on may combine different time series collected at different frequencies
(daily, quarterly etc.). The continuous-discrete state space model can handle all these cases
easily, since the system model proceeds in continuous time but is only measured at certain
irregular times ti. Even different sampling intervals of the panel units and/or exogenous
variables are possible. Thus, in principle, one could collect data at arbitrary times (no panel
waves). Missing data can be treated by the Kalman filter measurement update, if missing
components are canceled in the respective matrices. In fact, the discrete time measurement
of a continuous time model may be viewed as a missing data problem and all nonmeasured
states are reconstructed by the filter.
Individual specific random effects πn can be treated in the state space model by writing
(n = 1, . . . , N)

d
[
yn

πn

]
=

[
A I
0 0

][
yn

πn

]
dt+

[
G
0

]
dWn(t) (28)

zni = [H 0 ]
[
yni

πni

]
+ εni,

From this one gets estimates of the covariance matrix Var(πn) of the several components
and is able to specify correlations between states and random effects Cov(yn(t0), πn).

3 NONLINEAR DIFFERENTIAL EQUATIONS AND

STATE SPACE MODELS

Whereas the linear case seems to be solved and implemented completely (but is not frequently
applied), there are many issues and competing approaches in the nonlinear field. It is
presently an area of very active research due to the growing interest in finance models. The
option price model of Black and Scholes relies on a SDE model for the underlying stock
variable and Merton’s monograph (1990) on continuous finance has been given the field a
strong ’continuous’ flavor. This is in contrast to econometrics where still times series method
dominate and also sociology despite the old tradition of Coleman and others.
Here we have the general system

dY (t) = f(Y (t), t, ψ)dt+ g(Y (t), t, ψ)dW (t) (29)

Zi = h(Y (ti), ti, ψ) + εi. (30)

A strong simplification occurs when the state is completely measured at times ti, i.e. Zi =
Yi = Y (ti). Then, only the transition probability p(yi+1, ti+1|yi, ti) must be computed in
order to obtain the likelihood function

l(ψ;Y ) = log p(YT , . . . , Y0;ψ) =
T−1∑
i=0

log p(Yi+1|Yi;ψ)p(Y0). (31)
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Unfortunately, the transition probability can be computed analytically only in some special
cases (including the linear), but in general approximation methods must be employed. Since
the transition density fulfils a partial differential equation (PDE), the so called Fokker-
Planck equation, approximation methods for PDE, e.g. finite difference methods can
be used (cf. Jensen and Poulsen, 2002). .
A large class of approximations rests on linearization methods which can be applied to the
exact moment equations (extended Kalman Filter EKF; cf. Jazwinski, 1970 and below)
or directly to the nonlinear differential equation using Itô’s lemma (local linearization LL;
Shoji and Ozaki, 1997, 1998). Since the linearity is only approximate in the vicinity of a
measurement or reference trajectory, the conditional Gaussian schemes are valid only for
short measurement intervals ti+1 − ti. Other linearization methods relate to the diffusion
term, but are interpretable in terms of the EKF (Nowman, 1997)
Alternatively, the Monte Carlo method can be employed to obtain approximate transition
densities (Pedersen, 1995, Andersen and Lund, 1997, Elerian et al., 2001, Singer, 2002, 2003).
More recently, Hermite expansions of the transition density have been utilized by Aı̈t-
Sahalia, 2002). In this approach, the expansion coefficients are expressed in terms of condi-
tional moments and computed analytically by using computer algebra programs. The com-
putations comprise the multiple action of the backward operator L = F † on polynomials.
Alternatively, one can use systems of moment differential equations (Singer, 2004). It seems
that this approach is most efficient both in accuracy and computing time (cf. Aı̈t-Sahalia,
loc. cit., fig. 1, Jensen and Poulsen, 2002).
Nonparametric approaches attempt to estimate the drift function f() and the diffusion
function Ω() without assumptions about a certain functional form. They typically involve
kernel density estimates of conditiona densities (cf. Bandi and Phillips, 2001). Other ap-
proaches utilize Taylor series expansions of the drift function and estimate the derivatives
(expansion coefficients) as latent states using the LL method (similarly to the SNF) (Shoji,
2002).

State space models

The continuous-discrete state space model (29) may be treated approximately by linearized
moment equations, if one computes the exact evolution equations (the dependence on ψ is
dropped)

(d/dt)µ(t|ti) = E[f(Y, t)|Z i] (32)

(d/dt)Σ(t|ti) = E[f(Y, t)(Y (t) − µ(t|ti))|Z i] + E[Ω(Y, t)]. (33)

These are not differential equations, since they contain the conditional density p(y, t|Z i)
which would already contain the complete solution of the filtering problem. Taylor expan-
sion of f up to first order around the conditional mean µ(t|ti) = E[Y (t)|Z i] yields the
continuous-discrete extended Kalman filter EKF

(d/dt)µ(t|ti) = f(µ(t|ti), t) (34)

(d/dt)Σ(t|ti) = A(µ(t|ti), t)Σ(t|ti) +Σ(t|ti)A′(µ(t|ti), t) +Ω(µ(t|ti), t). (35)
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with Jacobian A(µ(t|ti), t) = (∂f/∂y)(µ(t|ti), t) : p×p. In contrast to (32) the EKF equations
are a closed system of differential equations to be solved with standard numerical techniques
(Runge-Kutta etc). Second order derivatives lead to the so called second order nonlinear
filter (SNF).
At measurement time ti+1, the output vector h() may be expanded around the approximate
conditional mean µ(ti+1|ti) to yield a locally linear measurement equation

Zi+1 = h(µ(ti+1|ti), ti+1) +H(µ(ti+1|ti), ti+1) ∗ (Yi+1 − µ(ti+1|ti)) + εi+1. (36)

with Jacobian H(µ(ti+1|ti), ti+1) = (∂h/∂y)(µ(ti+1|ti), ti+1) : k × p. This permits the usage
of the linear measurement update equations (13).
For large measurement intervals or strongly nonlinear systems the conditionally Gaussian
approach (EKF, SNF or LL) is not sufficient and other approximation methods can be ap-
plied. The computation of the a priori density p(yi+1, ti+1|Z i) requires the solution of the
Fokker-Planck equation and the measurement update is the Bayes formula leading to the
general nonlinear filtering scheme

time update:

∂p(y, t|Z i)

∂t
= F (y, t)p(y, t|Z i) ; t ∈ [ti, ti+1] (37)

p(y, ti|Z i) := p(yi|Z i)

p(y, ti+1|Z i) := p(yi+1|Z i)

measurement update:

p(yi+1|Z i+1) =
p(zi+1|yi+1, Z

i)p(yi+1|Z i)

p(zi+1|Z i)
(38)

:= pi+1|i+1

p(zi+1|Z i) =
∫
p(zi+1|yi+1, Z

i)p(yi+1|Z i)dyi+1, (39)

i = 0, . . . , T − 1, where F is the Fokker-Planck operator

F (y, t)p(y, t|x, s) = −∑
i

∂

∂yi
[fi(y, t)p(y, t|x, s)]

+1
2

∑
ij

∂2

∂yi∂yj
[Ωij(y, t)p(y, t|x, s)]. (40)

The filtering scheme yields a recursive computation of the likelihood function

l(ψ;Z) =
T−1∑
i=0

log p(zi+1|Z i;ψ) + log p(z0;ψ). (41)

Simulation based filtering methods in discrete time have been used such as Markov
chain Monte Carlo (MCMC; Carlin et al., 1992, Kim et al., 1998), rejection sampling us-
ing density estimators (Tanizaki, 1996, Tanizaki and Mariano, 1995, Hürzeler and Künsch,
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1998), importance sampling and antithetic variables (Durbin and Koopman, 1997, 2000) and
recursive bootstrap resampling (Gordon et al., 1993, Kitagawa, 1996).
In the continuous-discrete case, the time update can be accomplished by using the Chapman-
Kolmogorov equation (Pedersen, 1995, Singer, 2003). Importance sampling is implemented
by approximate smoothing in order to reduce the variance of the simulated likelihood func-
tion. For this purpose the Gaussian sum filter of Alspach and Sorenson (1972) is used.
This is an extension of the EKF where several filters run simultaneously and the nongaus-
sian densities are represented by Gaussian mixture distributions. Moreover, numerical
integration procedures have been used (Kitagawa, 1987).

4 CONCLUSION

Whereas the linear continuous/discrete state space model (including conditionally gaussian
models) can be efficiently estimated by the Kalman filter algorithm, the nonlinear case (with
and without measurement model) is an active field of research with competing methods (both
analytical and numerical). Especially in the multivariate case further research is needed.
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