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Abstract

The likelihood function of a continuous-discrete state space model with
state dependent diffusion function is computed by integrating out the latent
variables with the help of a Langevin sampler. The continuous time paths are
discretized on a time grid in order to obtain a finite dimensional integration
and densities w.r.t. Lebesgue measure. We use importance sampling, where
the exact importance density is the conditional density of the latent states,
given the measurements. This unknown density is either estimated from the
sampler data or approximated by an estimated normal density. Then, new tra-
jectories are drawn from this Gaussian measure. Alternatively, a Gaussian im-
portance density is directly derived from an extended Kalman smoother with
subsequent sampling of independent trajectories (extended Kalman sampling
EKS). We compare the Monte Carlo results with numerical methods based on
extended, unscented and Gauss-Hermite Kalman filtering (EKF, UKF, GHF)
and a grid based solution of the Fokker-Planck equation between measure-
ments. We use the repeated multiplication of transition matrices based on
Euler transition kernels, finite differences and discretized integral operators.
The methods are illustrated for the geometrical Brownian motion and the
Ginzburg-Landau model.
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1 Introduction

Maximum likelihood estimation of sampled linear and nonlinear stochastic differen-
tial equations is of high practical importance since most data sets are only col-
lected at discrete, often large sampling times, especially in economics and the social
sciences. Nevertheless, exact ML estimation is possible, if one can compute the
transition density between the sampling intervals.

In the linear case1, the approach was pioneered by Bergstrom (1988), who in-
troduced the ’exact discrete model’, an exact autoregressive scheme valid at the
measurement times with nonlinear parameter restrictions due to discrete sampling.
The likelihood function can be computed recursively with Kalman filter methods
(Jones; 1984; Jones and Tryon; 1987; Harvey and Stock; 1985; Hamerle et al.; 1991;
Singer; 1990, 1993, 1995, 1998), or by representing the dynamic state space model as
a structural equation model (SEM) (Oud and Jansen; 2000; Oud and Singer; 2008;
Singer; 2012). In both approaches, the parameter matrices of the discrete time
model are nonlinear matrix functions of the original parameters of the continuous
time model. One can also formulate the EDM on a time grid which is finer than
the sampling interval. Then, the nonlinear parameter functions can be linearized
and their values over the whole sampling interval are implicitly generated by the
filter (cf. Singer; 1995) or the SEM equations (Singer; 2012). With this so-called
oversampling device, also linear (w.r.t. the parameters) SEM software like LISREL
can be used.

In the nonlinear case, the transition density is explicitly known only for some
special cases, e.g. the square root model (Feller; 1951). There are a variety of
approaches to obtain approximations, e.g. Kalman filtering (Singer; 2002, 2011;
Särkkä et al.; 2013), analytical approximations (Aı̈t-Sahalia; 2002, 2008; Chang et
al.; 2011; Li; 2013), Monte Carlo methods (Pedersen; 1995; Elerian et al.; 2001;
Singer; 2002; Beskos et al.; 2006; Stramer et al.; 2010; Girolami and Calderhead;
2011; Särkkä et al.; 2013) and numerical solutions of the Fokker-Planck equation
(Risken; 1989; Wei et al.; 1997).

In this paper, the likelihood function is computed by integrating out the la-
tent variables of the state space model, such that only the marginal distribution of
the measurements remains. This task is performed by using a Langevin sampler
(Langevin; 1908; Roberts and Stramer; 2001, 2002; Hairer et al.; 2005, 2007; Apte
et al.; 2007, 2008; Hairer et al.; 2009) combined with importance sampling. The
unknown importance density is estimated from the sampler data in several ways.

We derive a conditional Markov representation which is estimated using kernel
density and regression methods. Alternatively, the true importance density is re-
placed by an estimated Gaussian density. From this, new data are generated which
have the same second order properties (mean and covariance function) as the orig-

1In order to avoid misunderstandings, one must distinguish between (non)linearity in the con-
tinuous time dynamical specification (differential equation) w.r.t. the state variables and in the
derived ’exact discrete model’ w.r.t. the parameters.
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inal Langevin data. As a variant, the mean and covariance function are directly
computed by a Kalman smoother, avoiding Langevin sampling. This approach will
be called extended Kalman sampling (EKS).

In section 2, the continuous-discrete state space model is introduced. Then,
Langevin path sampling is discussed in a finite dimensional approach. We analyt-
ically compute the negative gradient of the potential − log p(η|z) [log probability
density of latent states given the data], which serves as the drift function of a
Langevin equation. It is not assumed, that the diffusion function of the state space
model is state independent. Section 4 discusses the maximum likelihood approach
and the determination of the likelihood function. In section 4.1, two methods for
computing the importance density are discussed, namely an estimation approach and
a reference measure method. Then, in section 4.2, the likelihood is calculated by
numerical integration, using Euler transition kernels and transition kernels derived
from the Fokker-Planck equation (finite differences and integral operator approach).
In section 5, applications such as the model of geometrical Brwonian motion and the
bimodal Ginzburg-Landau model are considered, and the Fokker-Planck as well as
Monte Carlo approach are compared with each other. In the appendix, a continuum
limit for the Langevin sampler is considered.

2 Continuous-discrete state space model

Continuous time system dynamics and discrete time measurements (at possibly ir-
regular measurement times ti, i = 0, ..., T ) can be unified by using the nonlinear
continuous-discrete state space model (Jazwinski; 1970, ch. 6.2)

dY (t) = f(Y (t), x(t), ψ)dt+ g(Y (t), x(t), ψ)dW (t) (1)

Zi = h(Y (ti), x(ti), ψ) + εi; i = 0, ..., T. (2)

In (1), the state vector Y (t) ∈ Rp is a continuous time random process and the
nonlinear drift and diffusion functions f : Rp×Rq×Ru → Rp and g : Rp×Rq×Ru →
Rp×Rr depend on a u-dimensional parameter vector ψ. Furthermore, x(t) ∈ Rq are
deterministic exogenous (control) variables. The system errors in (1) are increments
of the Wiener process W (t) ∈ Rr. Its formal derivative is Gaussian white noise
ζ(t) = dW (t)/dt with zero mean and covariance function E[ζρ(t)ζρ′(s)] = δρρ′δ(t −
s), ρ = 1, ..., r, where δ(t − s) is the Dirac delta function (cf. Lighthill; 1958), and
δρρ′ is the Kronecker delta symbol. Thus the process errors are independent for
the times t 6= s and components ρ 6= ρ′. The random initial condition Y (t0) is
assumed to have a density p0(y, ψ) and is independent of dW (t). The nonlinear
state equation (1) is interpreted in the sense of Itô (see e.g., Arnold; 1974). Finally,
the error term εi ∼ N(0, R(x(ti), ψ)) in the measurement equation (2) is a discrete
time white noise, independent for the times of measurement. It is assumed to be
independent of the system error dW (t) (cf. Jazwinski; 1970, p. 209-210).
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3 Langevin path sampling:

Finite dimensional approach

3.1 Likelihood and Langevin equation

In order to obtain finite dimensional densities w.r.t. Lebesgue measure and a nu-
merically feasible approach, the SDE (1) is first replaced by the Euler-Maruyama
approximation

ηj+1 = ηj + f(ηj, xj, ψ)δt+ g(ηj, xj, ψ)δWj (3)

:= ηj + fjδt+ gjδWj

on a temporal grid τj = t0 + jδt; j = 0, ..., J = (tT − t0)/δt (cf. Kloeden and
Platen 1992, chs. 10.2, 14.1 and Stuart et al. 2004). The process noise is given as
δWj = zj

√
δt, zj ∼ N(0, Ir), i.i.d. and xj = x(τj). The state variables are measured

at times ti = τji , ji = (ti − t0)/δt according to

Zi = h(ηji , xji , ψ) + εi. (4)

The approximation error of the Euler scheme could be displayed by a superscript
ηδtj , but this is dropped for simplicity. Since ηj+1|ηj is conditionally Gaussian, the
finite dimensional density of η = {ηJ , ..., η0} is given by [for clarity dropping the
parameter and the exogenous variables; setting η̃ := {ηJ , ..., η1}]

p(η) =
J−1∏
j=0

p(ηj+1|ηj) p(η0) = p(η̃|η0)p(η0) (5)

:= Z−1e−S p(η0) (6)

S = 1
2

J−1∑
j=0

(ηj+1 − ηj − fjδt)′(Ωjδt)
−1(ηj+1 − ηj − fjδt) (7)

Z =
J−1∏
j=0

|2πΩjδt|1/2, (8)

where Ωj = gjg
′
j is assumed to be nonsingular. Otherwise, one can use the singular

normal distribution (cf. Mardia et al.; 1979, ch. 2.5.4, p. 41). In order to compute
the likelihood function of the measured data z = {zT , ..., z0}, one can augment the
density function with imputed variables, e.g. the latent states η, leading to

p(z) =

∫
p(z|η)p(η)dη. (9)

The resulting high dimensional integration will be accomplished by Monte Carlo
methods, and in comparision, by numerical integration. A direct approximation of
(9) by the mean

p(z) ≈ N−1

N∑
l=1

p(z|ηl)
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is extremely inefficient, since the unconditional random vectors ηl ∼ p(η) in the sum
are mostly suppressed by the measurement density p(z|η) =

∏T
i=0 φ(zi, h(ηji), Ri).

This may be thought of defining windows in phase space where the trajectories ηl
must pass through (cf. Kac; 1980). Using the idea of importance sampling, one can
rewrite (9) as

p(z) =

∫
p(z|η)p(η)

p(η|z)
p(η|z)dη, (10)

where p(η|z) is the optimal importance density (Kloeden and Platen; 1999, p. 519).
Thus one must be able to draw conditional trajectories ηl|z, a task which can be
accomplished by the Langevin approach (Parisi and Wu; 1981).

Introducing a (J+1)p-dimensional random process η(u) = ηjα(u); j = 0, ..., J, α =
1, ..., p and a potential Φ(η) := − log p(η), one may consider a Langevin equation in
the fictious time dimension u

dη(u) = −∂ηΦ(η)du+
√

2 dW (u), (11)

where W is a (J+1)p-dimensional Wiener process and ∂η := ∂
∂η

. Under the assump-

tion of ergodicity, the (autocorrelated) trajectory η(u) asymptotically (u → ∞)
draws data from the stationary distribution

pstat(η) = e−Φ(η) = p(η).

This may be seen by considering the stationary Fokker-Planck equation

∂up(η, u) =
∑
jα

∂ηjα [(∂ηjαΦ(η))p(η, u) + ∂ηjα p(η, u)] = 0 (12)

for the density p(η, u) (see, e.g. Risken; 1989, chs. 5.2, 6.0). Of course, one can
directly draw independent vectors η from (3). The advantage of (11) is the possibility
of drawing from p(η|z), by using

Φ(η|z) = − log p(η|z) = −[log p(z|η) + log p(η)− log p(z)] (13)

as potential. The last term, which is the desired quantity (10), drops out by com-
puting the gradient. Keeping a continuum limit δt → 0 for eqn. (3) in mind (see
appendix), the partial derivatives in the Langevin equation are scaled by the time
discretization interval δt, leading to

dη(u) = −δηΦ(η|z)du+
√

2 dW (u)/
√
δt. (14)

Here we set δη := ∂
∂ηδt

:= δ
δη

in view of the functional derivative δ
δη(t)

.2

2 The functional Φ(y) may be expanded to first order by using a linear functional (δΦ/δy)(h) =∫
(δΦ/δy(s))h(s)ds (functional derivative). One has Φ(y + h)− Φ(y) = (δΦ/δy)(h) +O(||h||2).
A discrete version is Φ(η) = Φ(η0, ..., ηJ) and Φ(η + h) − Φ(η) =

∑
j [∂Φ(η)/∂(ηjδt)]hjδt +

O(||h||2). As a special case, consider the functional Φ(η) = ηj . Since ηj +hj −ηj =
∑

(δjk/δt)hkδt
one has the continuous analogue y(t) + h(t)− y(t) =

∫
δ(t− s)h(s)ds, thus δy(t)/δy(s) = δ(t− s).

See appendix
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3.2 Drift function

In order to obtain an efficient sampling algorithm, the drift function in (14)

δη log p(η|z) = δη[log p(z|η) + log p(η)]

must be computed analytically.3

Consider the term log p(η) (cf. eqn. 5). The Lagrangian (7), also called Onsager-
Machlup functional (Onsager and Machlup; 1953) may be rewritten as

S = 1
2

J−1∑
j=0

δη′j(Ωjδt)
−1δηj (15)

−
J−1∑
j=0

f ′jΩ
−1
j δηj + 1

2

J−1∑
j=0

f ′jΩ
−1
j fjδt (16)

:= S0 + S1 + S2,

δηj := ηj+1 − ηj. In a system without drift (f = 0), only the first term S0 remains,
corresponding to a random walk4. Therefore, the density p(η) can be factorized as
p(η) = p0(η) α(η) where

α(η) =
p(η)

p0(η)
= exp

{
J−1∑
j=0

f ′jΩ
−1
j δηj − 1

2

J−1∑
j=0

f ′jΩ
−1
j fjδt

}
(17)

is the density ratio and p0(η) = Z−1 exp(−S0)p(η0) is the density of the driftless
process including the initial condition. Thus one has the decomposition log p(η) =
− logZ − S0 − S1 − S2 + log p(η0).

3.2.1 State independent diffusion coefficient

First we assume a state independent diffusion coefficient Ωj = Ω, but later we set
Ωj = Ω(ηj, xj). This is important, if the Lamperti transformation does not lead to

3 Notation: In the following, the components of vectors and matrices are denoted by greek
letters, e.g. fα, α = 1, ..., p, and partial deriatives by commas, i.e. fα,β := ∂fα/∂ηβ = ∂βfα =
(fη)αβ . The Jacobian matrix ∂f/∂η is written as fη and its βth column as (fη)•β . Likewise, Ωα•
denotes row α of matrix Ωαβ and Ω•• = Ω for short.

Latin indices denote time, e.g. fjα = fα(ηj). Furthermore, a sum convention is used for the
greek indices (i.e. fαgα =

∑
α fαgα). The difference operators δ = B−1 − 1, ∇ = 1− B, with the

backshift Bηj = ηj−1 are used frequently. One has δ ·∇ = B−1−2+B := ∆ for the central second
difference.

4In the case of a state dependent diffusion matrix, ηj+1 = ηj +g(ηj , xj , ψ)δWj generates a more
general martingale process. Expression (16) remains finite in a continuum limit (see appendix).
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constant coefficients in multivariate models.5 In components, the term (15) reads

S0 = 1
2

J−1∑
j=0

(ηj+1;β − ηjβ)(Ωβγδt)
−1(ηj+1;γ − ηjγ),

Note that (Ωβγδt)
−1 ≡ [(Ωδt)−1]βγ and the semicolon in ηj+1;β serves to separate

the indices, it is not a derivative. Differentiation w.r.t. the state ηjα yields (j =
1, ..., J − 1)

∂S0/∂(ηjαδt) = −Ω−1
αγδt

−2(ηj+1;γ − 2ηjγ + ηj−1;γ) (18)

In vector notation, we have ∂S0/∂(ηjδt) = −Ω−1δt−2∆ηj. On the boundaries j =
0, j = J we obtain

∂S0/∂(η0αδt) = −Ω−1
αγδt

−2(η1γ − η0γ)

∂S0/∂(η0αδt) = Ω−1
αγδt

−2(ηJγ − ηJ−1;γ)

Next, the derivatives of logα(η) are needed. One gets

∂S1/∂(ηjαδt) = −δt−1[fjβ,αΩ−1
βγ δηjγ − Ω−1

αγ (fjγ − fj−1;γ)]

or in vector form, using difference operators

∂S1/∂(ηjαδt) = −δt−1[f ′j•,αΩ−1δηj − Ω−1δfj−1], (19)

where fj•,α is column α of the Jacobian fη(ηj). The second term yields

∂S2/∂(ηjαδt) = ∂/∂ηjα
1
2
[fjβΩ−1

βγ fjγ] = fjβ,αΩ−1
βγ fjγ

= f ′j•,αΩ−1fj. (20)

Finally, one has to determine the drift component corresponding to the measure-
ments, which is contained in the conditional density p(z|η). Since it was assumed
that the error of measurement is Gaussian (see 2), we obtain

p(z|η) =
T∏
i=0

p(zi|ηji) =
T∏
i=0

φ(zi;hi, Ri),

where φ(y;µ,Σ) is the multivariate Gaussian density, hi = h(ηji , xji) is the output
function and Ri = R(xji) is the measurement error covariance matrix. Thus the

5These are called irreducible diffusions. A transformation z = h(y) leading to unit diffusion for
z must fulfil the system of differential equations hα,βgβγ = δαγ , α, β = 1, ..., p; γ = 1, ..., r. The
inverse transformation y = v(z) fulfils vα,γ(z) = gαγ(v(z)). Thus vα,γδ = gαγ,εvε,δ = vα,δγ =
gαδ,εvε,γ . Inserting v one obtains the commutativity condition gαγ,ε gεδ = gαδ,ε gεγ . which is
necessary and sufficient for reducibility. See Kloeden and Platen (1992, ch. 10, p. 348), Aı̈t-
Sahalia (2008).
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derivative reads (matrix form in the second line)

∂ log p(z|η)/∂(ηjαδt) =
T∑
i=0

hiγ,αR
−1
iβγ(ziβ − hiβ)(δjji/δt)

=
T∑
i=0

h′i•,αR
−1
i (zi − hi)(δjji/δt) (21)

The Kronecker symbol δjji only gives contributions at the measurement times ti =
τji . Together we obtain for the drift of the Langevin equation (14)

δη log p(η|z) = δη[log p(z|η) + log p(η)]

= (21)− (18 + 19 + 20) + δη log p(η0). (22)

Here, p(η0) is an arbitrary density for the initial latent state.

3.2.2 State dependent diffusion coefficient

In the case of Ωj = Ω(ηj, xj) the expressions get more complicated. The derivative
of S0 now reads

∂S0/∂(ηjαδt) = δt−2[Ω−1
j−1;αβδηj−1;β − Ω−1

jαβδηjβ + 1
2
δηjβΩ−1

jβγ,αδηjγ], (23)

Ω−1
jβγ,α ≡ (Ω−1)jβγ,α. A closer relation to expression (18) may be obtained by the

Taylor expansion

Ω−1
j−1;αβ = Ω−1

jαβ + Ω−1
jαβ,γ(ηj−1;γ − ηjγ) +O(||δηj−1||2) (24)

leading to

∂S0/∂(ηjαδt) = −Ω−1
jαβδt

−2(ηj+1;β − 2ηjβ + ηj−1;β)

− Ω−1
jαβ,γδt

−2δηj−1;βδηj−1;γ +O(δt−2||δηj−1||3)

+ 1
2
Ω−1
jβγ,αδt

−2δηjβδηjγ. (25)

In the state dependent case also the derivative of the Jacobian term logZ−1 =
−1

2

∑
j log |2πΩjδt| is needed. Since the derivative of a log determinant is

∂ log |Ω|/∂Ωαβ = Ω−1
βα,

one obtains

∂ logZ−1/∂(ηjαδt) = −1
2
δt−1Ω−1

jβγΩjβγ,α = −1
2
δt−1tr[Ω−1

j Ωj,α],

Ωj,α = Ωj••,α for short. Using the formula ΩjΩ
−1
j = I; Ωj,α = −ΩjΩ

−1
j,αΩj we find

∂ logZ−1/∂(ηjαδt) = 1
2
δt−1tr[Ω−1

j,αΩj]. (26)
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The contributions of S1 and S2 are now (see 16)

∂S1/∂(ηjαδt) = (27)

−δt−1[fjβ,αΩ−1
jβγδηjγ − (Ω−1

jαγfjγ − Ω−1
j−1;αγfj−1;γ) + fjβΩ−1

jβγ,αδηjγ]

∂S2/∂(ηjαδt) = fjβ,αΩ−1
jβγfjγ + 1

2
fjβΩ−1

jβγ,αfjγ. (28)

It is interesting to compare the terms in (23, 27, 28) depending on the derivative
Ω−1
jβγ,α, which read in vector form

1
2
δt−2tr[Ω−1

j,αδηjδη
′
j]− δt−1tr[Ω−1

j,αδηjf
′
j] + 1

2
tr[Ω−1

j,αfjf
′
j],

and the Jacobian derivative (26). The terms can be collected to yield

1
2
δt−2tr{Ω−1

j,α[Ωjδt− (δηj − fjδt)(δηj − fjδt)′]}, (29)

as may be directly seen from the Lagrangian (7).
In summary, the Langevin drift component (jα), j = 0, ...J ;α = 1, ..., p is in

vector-matrix form

δηjα log p(η|z) = δηjα [log p(z|η) + log p(η)]

=
T∑
i=0

h′i•,αR
−1
i (zi − hi)(δjji/δt)

+ δt−2[Ω−1
jα•δηj − Ω−1

j−1;α•δηj−1]

+ δt−1[f ′j•,αΩ−1
j δηj − (Ω−1

jα•fj − Ω−1
j−1;α•fj−1)]

− f ′j•,αΩ−1
j fj

+ 1
2
δt−2tr{Ω−1

j,α[Ωjδt− (δηj − fjδt)(δηj − fjδt)′]}
+ δηjα log p(η0).

Here, hi•,α is column α of Jacobian hη(ηji), Ω−1
jα• is row α of Ω(ηj)

−1, Ω−1
j,α := Ω−1

j••,α
and fj•,α denotes column α of Jacobian fη(ηj).

4 Maximum likelihood estimation

4.1 Monte Carlo approach

In section (3.1), conditional path sampling was motivated by computing the density
function (9) of the data z efficiently. Considering L(ψ) = p(z;ψ) as a function
of the parameter vector ψ, the maximum likelihood estimator is obtained as ψ̂ =
arg maxψ L(ψ) (cf. Basawa and Prakasa Rao; 1980). In equation (10), namely

p(z) =

∫
p(z|η)p(η)

p(η|z)
p(η|z)dη := E[g(η, z)|z], (30)

9



the expectation over the invariant (stationary) distribution may be estimated as
fictious-time average

p̂(z;U) = U−1

∫ U

0

g(η(u), z)du ≈ N−1

N−1∑
l=0

g(ηl, z) := p̂(z; δu,N) (31)

if η(u) is ergodic. The sum results as an approximation of the integral with grid
size δu, U = Nδu, ul = lδu, ηl = η(ul). In (31), the importance (smoothing) density
p(η|z) is unknown, whereas conditional trajectories ηl ∼ p(η|z) can be drawn from
the Langevin equation (14) in equilibrium. One could also simulate independent
replications ηl(u), l = 0, ..., N − 1, evaluated at large u.

The Langevin equation for the simulation of η(u) in the fictious time dimension u
is a nonlinear Itô equation with (J+1)p components. It can be solved approximately
using several numerical schemes, e.g. the Heun method or a 4th order Runge-Kutta
scheme (Kloeden and Platen; 1999; Rümelin; 1982; Gard; 1988). Here we use an
Ozaki scheme (Ozaki; 1985) with Metropolis mechanism in order to ensure a correct
stationary distribution. This scheme is exact for linear drift functions.

In order to improve the relaxation of the Langevin equation to equilibrium, it
can be scaled with a positive definite kernel matrix K. The transformed equation

dη(u) = −KδηΦ(η|z)du+
√

2K1/2 dW (u)/
√
δt, (32)

K = K1/2(K1/2)′ yields the same stationary distribution, as may be seen from the
stationary Fokker-Planck equation (12). The kernel may be even time and state
dependent, i.e. K = K(η, u) (cf. Parisi and Wu; 1981; Okano et al.; 1993), but then
additional terms and convolution integrals are required. In the constant case one
has (setting ∂jα := ∂ηjα and summing over double indices)

0 = ∂jαKjα;lβ(∂lβΦ)p+ ∂jα∂lβK
1/2
jα;uγK

1/2
uγ;lβp

= ∂jα

{
Kjα;lβ(∂lβΦ)p+Kjα;lβ∂lβp

}
= divJ

Therefore, setting the probability current J = 0 one obtains the equilibrium distri-
bution pstat(η|z) = e−Φ(η|z), independent of K (see, e.g. Risken; 1989, chs. 5.2, 6.0).
If the Langevin equation (14) were linear with drift Hηδt (i.e. Φ = 1

2
η′(−H)ηδt2

with symmetric negative definite H), one can use K = −H−1 as kernel to obtain an
equation with decoupled drift components dη = −(ηδt)du +

√
2K1/2 dW (u)/

√
δt.

For example, the leading term (18) is linear. If the linear drift is differentiated w.r.t
η, one obtains the matrix H = δη(Hηδt). In the nonlinear case, the idea is to com-
pute the Hessian matrix Hjα;j′α′ = −δηjαδηj′α′Φ(η|z) at a certain point η(u0) and use

K = −H−1 as kernel.

4.1.1 Determination of the importance density

For computing the likelihood function (30), the importance density p(η|z) must be
determined. Several approaches have been used:

10



1. Approximation of the optimal p(η|z) by a density estimator p̂(η|z), using kernel
density or regression methods.

One can use a density estimate

p̂(η|z) = N−1

N∑
l=1

κ(η − ηl;H), (33)

where κ is a kernel function and H is a suitably chosen smoothing parameter.
In this article a multivariate gaussian kernel κ(y,H) = φ(y; 0, h2S) is used,
where e = 1/(p+4), A = (4/(p+2))e;h = An−e and S is the sample covariance
matrix (Silverman; 1986, p. 78 ff.).

The density estimate (33) seems to be natural, but the dimension of η is very
high, namely (J+1)p, J = (tT−t0)/δt. It turns out that the estimation quality
is not sufficient. Therefore the Markov structure of the state space model must
be exploited first. We use the Euler discretized state space model (3)

ηj+1 = f(ηj)δt+ g(ηj)δWj

zi = h(yi) + εi,

(where the dependence on xj and ψ is dropped for simplicity) in combination
with the Bayes formula

p(η|z) = p(ηJ |ηJ−1, ..., η0, z) p(ηJ−1, ..., η0|z).

Now it can be shown that ηj is a conditional Markov process

p(ηj+1|ηj, ..., η0, z) = p(ηj+1|ηj, z). (34)

To see this, we use the conditional independence of the past zi = (z0, ..., zi)
and future z̄i = (zi+1, ...zT ) given ηj = (η0, ..., ηj). One obtains

p(ηj+1|ηj, zi, z̄i) = p(ηj+1|ηj, z̄i) = p(ηj+1|ηj, z̄i)
p(ηj+1|ηj, zi, z̄i) = p(ηj+1|ηj, z̄i)

ji ≤ j < ji+1

since

(i) the transition density p(ηj+1|ηj, zi, z̄i) is independent of past measure-
ments, given the past true states, and only the last state ηj must be
considered (Markov process).

(ii) the transition density p(ηj+1|ηj, zi, z̄i) is independent of past measure-
ments.

11



Thus we have proved p(ηj+1|ηj, zi, z̄i) = p(ηj+1|ηj, zi, z̄i).

With the representation (34) it is sufficient to estimate the density func-
tion p(ηj+1|ηj, z) with a low dimensional argument ηj instead of the full η =
(η0, ...., ηJ). The estimation can be accomplished by using either

(a) density estimation methods as in (33), or by

(b) regression methods.

In the latter case, the Euler density is modified to the form

p(ηj+1, δt|ηj, z) ≈ φ(ηj+1; ηj + (fj + δfj)δt, (Ωj + δΩj)δt) (35)

where the correction terms are estimated using the data ηj ≡ ηj|z from the
Langevin sampler. It is assumed that the conditional states fulfil the Euler
discretized SDE (cf. 34)

δηj+1 = [f(ηj) + δfj(ηj)]δt+ [g(ηj) + δgj(ηj)]δWj (36)

with modified drift and diffusion functions. This functions can be estimated
by parametric specifications (e.g. δf(x) = α+βx+γx2) or nonparametrically.
The introduction of drift corrections was derived analytically in Singer (2002,
2014).

2. Another approach is the choice of a (in general suboptimal) reference density
p0(η|z) = p0(z|η)p0(η)/p0(z), where the terms on the right hand side are known
explicitly. This yields the representation

p(z) = p0(z)

∫
p(z|η)

p0(z|η)

p(η)

p0(η)
p0(η|z)dη. (37)

In this paper we use a conditional gaussian density

p0(η|z) = φ(η|z) = φ(η;E[η|z], V [η|z]) (38)

where the conditional moments are estimated from the

(a) Langevin sampler data ηl = ηl|z. Alternatively, one can use a

(b) Kalman smoother

to obtain approximations of the conditional moments. We use algorithms
based on the Rauch-Tung-Striebel smoother with Taylor expansions or us-
ing integration (unscented transform or Gauss-Hermite integration; see, e.g.
Jazwinski 1970; Särkkä 2013, ch. 9).

12



In both cases, one must (re)sample the data from p0 = φ(η|z) to compute the
likelihood estimate

p̂(z) = N−1
∑
l

p(z|ηl)p(ηl)
p0(ηl|z)

(39)

ηl ∼ p0.

4.1.2 Score function

The score function s(z) := ∂ψ log p(z) (dropping ψ) can be estimated by using a well
known formula of Louis (1982). One can write

s(z) = ∂ψ log

∫
p(z, η)dη = p(z)−1

∫
s(z, η)p(z, η)dη

= E[s(z, η)|z], (40)

s(z, η) := ∂ψ log p(z, η) = ∂ψp(z, η)/p(z, η), with the estimate

ŝ(z) = N−1
∑
l

s(z, ηl). (41)

From this a quasi Newton algorithm ψk+1 = ψk + F−1
k ŝk(z) can be implemented.

For example, one can use BFGS secant updates for Fk.

4.1.3 Bayesian estimation

A full Bayesian solution to the estimation problem can be obtained by the decom-
position of the posterior

p(η, ψ|z) = p(z, η, ψ)/p(z) = p(z|η, ψ)p(η|ψ)p(ψ)/p(z). (42)

From log p(η, ψ|z) one obtains a system of Langevin equations of the form (see eqn.
14)

dη(u) = δη log p(η, ψ|z)du+
√

2 dW1(u)/
√
δt (43)

dψ(u) = ∂ψ log p(η, ψ|z)du+
√

2 dW2(u), (44)

where W1 : (J + 1)p × 1 and W2 : u × 1 are independent Wiener processes. For
large ”time” u one obtains correlated random samples from p(η, ψ|z). The drift term
∂ψ log p(η, ψ|z) coincides with the score s(z, η) except for the prior term ∂ψ log p(ψ),
since p(η, ψ|z) = p(z, η|ψ)p(ψ)/p(z).

4.2 Numerical integration approach

The Monte Carlo approach will be compared with a method based on Riemann
integration combined with transition kernels, which are computed in three different
ways, namely by using i) the Euler transition kernel and the matrix exponential of
the Fokker-Planck operator, which is represented ii) as a matrix of finite differences
or iii) as an integral operator.

13



4.2.1 Transition kernel approach

The (J + 1)p-dimensional integral in the likelihood p(z) =
∫
p(z|η)p(η)dη can be

computed without Monte Carlo integration, at least for small dimensions p of ηj.
One can write

p(z) =

∫ T−1∏
i=0

[
p(zi+1|ηji+1

)

ji+1−1∏
j=ji

p(ηj+1|ηj)

]
p(z0|η0)p(η0)dη,

by using the conditional independence of Zi|η and the Markov property of η (see
equations 3–4). The likelihood expression can be represented recursively by the
Kalman updates (time update, measurement update, conditional likelihood)

p(ηji+1
|Zi) =

[
ji+1−1∏
j=ji

∫
dηj p(ηj+1|ηj)dηj

]
p(ηji |Zi)

p(ηji+1
|Zi+1) = p(zi+1|ηji+1

)p(ηji+1
|Zi)/p(zi+1|Zi)

p(zi+1|Zi) =

∫
p(zi+1|ηji+1

)p(ηji+1
|Zi)dηji+1

i = 0, ..., T

with initial condition p(η0|Z0) = p(z0|η0)p(η0)/p(z0); p(z0) =
∫
p(z0|η0)p(η0)dη0 and

Zi := {zi, ..., z0} (data up to time ti). Thus one has

p(z) =
T−1∏
i=0

p(zi+1|Zi)p(z0)

by the Bayes formula. Actually, the Kalman representation is more general since
it is also valid for densities p(ηj+1|ηj, Zi), p(zi+1|ηji+1

, Zi) depending on lagged mea-
surements (cf. Liptser and Shiryayev; 2001, vol. II, ch. 13).

The p-dimensional integrals will be approximated as Riemann sums (or using
Gauss-Legendre integration)∫

p(ξ|η)p(η|ζ)dη ≈
∑
k

p(ξ|ηk)p(ηk|ζ)δη ≈
∑
k

p(ξ|ηk)p(ηk|ζ)wk

on a p-dimensional grid of supporting points ηk, i.e. k = {k1, ..., kp}, kα = 0, ..., Kα

is a multi index, ηk = {ηk1 , ..., ηkp} is a p-vector inside a p-dimensional interval
[a, b] = [a1, b1]× ...× [ap, bp], with coordinates

ηkα = aα + kαδηα (45)

ηKα = bα, α = 1, ..., p, and volume element δη =
∏p

α=1 δηα.
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4.2.2 Euler transition kernel

The Euler transition kernel p(ξl|ηk) for the difference equation (3) can be viewed
as a matrix Tlk. It is given by the normal density φ(ξ; η + f(η)δt,Ω(η)δt) on the
grid points ξl, ηk. The dependence on the time index j, the exogenous variables
xj = x(τj) and the lagged data Zi is omitted here.

A better approximation of the true transition kernel p(yj+1, τj+1|yj, τj) of the
original SDE (1) can be achieved through an expansion of the drift function using
Itô’s lemma (Shoji and Ozaki; 1997, 1998; Singer; 2002)

f(y) ≈ f(yj) + fy(yj)(y − yj) + 1
2
fyy(yj)Ω(yj)(t− tj). (46)

The approach is known under the label local linearization (LL). Inserting (46) into
the moment equations one obtains the linear differential equations µ̇ = E[f ] ≈
fj + Aj(µ − yj) + cj(t − tj), Σ̇ = AjΣ + ΣA′j + Ωj with the Jacobian terms Aj :=
fy(yj), cj := 1

2
fyy(yj)Ω(yj) (for details, see Singer; 2002). The second order term cj

only leads to contributions of order δt2. Thus an improved transition kernel is given
by

p(ηj+1|ηj) = φ(ηj;µj+1,Σj+1)

µj+1 = ηj + A1jfj + A−1
j [−Iδt+ A1j]cj

row Σj+1 = (Aj ⊗ I + I ⊗ Aj)−1(A∗j ⊗ A∗j − I)row Ωj,

A∗j := exp(Ajδt), A1j := A−1
j (A∗j − I), where row is the row-wise vector operator.

For small δt, one recovers the Euler terms µj+1 = ηj + fjδt; Σj+1 = Ωjδt. The
approaches are denoted as ETK and LLTK in the sequel.

4.2.3 Fokker-Planck equation

The transition kernel can also be obtained as a short time approximation to the
solution of the Fokker-Planck equation

∂tp(y, t|yj, τj) = −∂α[fαp(y, t|yj, τj)] + 1
2
∂α∂β[Ωαβp(y, t|yj)]

:= F (y)p(y, t|yj, τj)

with initial condition p(y, τj|yj, τj) = δ(y − yj). A summation convention over
doubly occuring indices α, β is supposed. Formally, one has p(yj+1, τj+1| yj, τj) =
exp[F (yj+1)δt] δ(yj+1 − yj), if the system is autonomous, i.e. x(t) = x. In this
case, the measurement time interval ∆ti := ti+1 − ti may be bridged in one step
p(yi+1, ti+1|yi, ti) = exp[F (yj+1)∆ti] δ(yi+1 − yi). For equally spaced data, only one
kernel must be computed. In the nonautonomous case, a time ordered exponential
must be considered. In this paper, it is assumed that x(t) = xj is constant in the
interval [τj, τj+1), so p(yj+1, τj+1|yj, τj) = exp[F (yj+1, xj)δt] δ(yj+1 − yj). In this
section, two approximations are considered:

1. First, the spatial (y) derivatives are replaced by finite differences on a multi-
dimensional grid yk.
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2. Second, the differential operator F is rewritten as an integral operator and the
integrals are approximated as sums.

The time dimension t is kept continuous. Such mixed approaches are called lattice
approximation, semi-discretization or method of lines (cf. Schiesser; 1991; Jetschke;
1991; Yoo; 2000). In both cases, one obtains a linear matrix differential equation
which can be solved by the matrix exponential function.

Finite differences. Using finite differences, one may write

−∂α[fαp(y)] ≈ −δk1l1 ...∇kαlα ...δkplp [fα(yl)p(yl)]

with multi index l = {l1, ..., lp}, yl = {yl1 , ..., ylp} = a + lδy (see 45) and two sided
differences ∇kαlα = (δkα+1;lα − δkα−1;l)/(2δyα). The diffusion term is

1
2
∂α∂β[Ωαβp(y)] ≈ 1

2
δk1l1 ...∇kαlα ...∇kβ lβ ...δkplp [Ωαβ(yl)p(yl)]

with the replacement (diagonal terms α = β): ∇2
kαlα
→ ∆kαlα = (δkα+1;lα − 2δkαlα +

δkα−1;lα)/(δy2
α) (centered second difference). Thus the Fokker-Planck operator is

replaced by the matrix

Fkl = −δk1l1 ...∇kαlα ...δkplpfα(yl) + 1
2
δk1l1 ...∇kαlα ...∇kβ lβ ...δkplpΩαβ(yl). (47)

Usually the multi indices are flattened to a K =
∏

αKα-dimensional index. Clearly,
one obtains a high dimensional matrix problem. The transition kernel on the grid
points is written as matrix (possibly depending on xj)

p(ηj+1;k|ηjl) = [exp(F (xj)δt)]kl/δη

where the matrix exponential function may be evaluated using several methods,
including Taylor series and eigen methods (Moler and VanLoan; 2003)

Integral operator. Alternatively, the differential operator F (y) can be repre-
sented as integral operator

F (y)p(y) =

∫
F (y, y′)p(y′)dy′

with integral kernel F (y, y′) = F (y)δ(y − y′) = L(y′)δ(y − y′) = L(y′, y) (Risken;
1989, p. 69). Here L(y) = F ∗(y) is the backward operator and δ(y− y′) is the Dirac
delta function (cf. Lighthill; 1958). The differential operation q(y) = F (y)p(y) =∫
F (y, y′)p(y′)dy is thus transformed to an integral operation. It may be approxi-

mated on the p-dimensional grid yk as matrix-vector product

q(yk) =
∑
l

F (yk, yl)p(yl)δy

F (yk, yl) = F (yk)δ(yk − yl) := Fkl/δy.
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Explicitly, one obtains the distribution (cf. 47)

F (y, y′) = −δ(y1 − y′1)...∂yαδ(yα − y′α)...δ(yp − y′p)fα(y)

+ 1
2
δ(y1 − y′1)...∂yαδ(yα − y′α)...∂yβδ(yβ − y′β)...δ(yp − y′p)Ωαβ(y).

The delta function is interpreted as a function sequence δn(y) with the property
limn→∞

∫
δn(y − y′)φ(y′)dy′ = φ(y) for any test function φ (Lighthill; 1958). In

numerical applications, one must use a certain term of this delta sequence with
appropriate smoothness properties, leading to a free parameter n of the numerical
procedure. For example, one can use the series δn(y − y′) =

∑n
m=0 χm(y)χm(y′) for

a complete orthonormal system χm or the truncated Fourier transform δn(y− y′) =∫ n
−n exp(2πi(y − y′)k)dk.

If one writes F (y)p(y) = F (y)
∫
δ(y − y′)p(y′)dy, the term p(y, δn) =

∫
δn(y −

y′)p(y′)dy may be interpreted as a functional. In this guise the procedure was called
DAF (distributed approximating functional; cf. Wei et al.; 1997) using Hermite
functions (oscillator eigenfunctions) χm.

If the delta functions on the grid points ykα , ylα are replaced by δ(ykα − ylα) →
δkαlα/δyα, δ′(ykα − ylα) → (δkα+1,lα − δkα−1,lα)/(2δy2

α), δ′′(ykα − ylα) → (δkα+1,lα −
2δkαlα + δkα−1,lα)/δy3

α one recovers the finite difference approximation (47). This
choice corresponds to the delta sequence δδy(y) = χA(y)/δy, A = [−δy/2, δy/2]
where χA(x) is the indicator function of the set A. In this case the free parameter n =
δy is naturally given by the spatial discretization interval δy. The Euler transition
kernel does not require the choice of free parameters (it is naturally given by the
time discretization δt). The spatial discretization should be of order

√
Ωδt.

5 Applications

5.1 Geometrical Brownian Motion (GBM)

The SDE

dy(t) = µy(t)dt+ σy(t) dW (t) (48)

is a popular model for stock prices, used by Black and Scholes (1973) for modeling
option prices. It contains a multiplicative noise term y dW and is thus bilinear. The
form dy(t)/y(t) = µdt + σ dW (t)/dt shows, that the simple returns are given by a
constant value µdt plus white noise. For the log returns, we set x = log y, and use
Itô’s lemma to obtain dx = dy/y + 1/2(−y−2)dy2 = (µ − σ2/2)dt + σdW . This
shows, that the log returns contain the Wong-Zakai correction, i.e. µ̃ = µ − σ2/2.
From this, we obtain the exact solution

y(t) = y(t0)e(µ−σ2/2)(t−t0)+σ[W (t)−W (t0)], (49)

which is a multiplicative exact discrete model with log-normal distribution. The
exact transition density is thus

p(y, t|y0, t0) = y−1φ
(
log(y/y0); (µ− σ2/2)(t− t0), σ2(t− t0)

)
(50)
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Figure 1: Geometrical Brownian motion GBM: Trajectory and log returns. Vertical lines:
measurement times.

The model was simulated using µ = 0.07, σ = 0.2 and δt = 1/365. Only monthly
data were used (fig. 1).

The Langevin sampler output is displayed in fig. 2. Due to a convergence kernel
(inverse Hessian of the potential Φ), all trajectories relax to equilibrium at about
the same rate and the autocorrelation is small (1st row, 2nd columnn). We sampled
M = 2000 trajectories, dropping 30% at the beginning to avoid nonstationarity and
used only every second one (thinning). This reduces autocorrelation in the sample.
Thus the effective sample size is M ′ = 700.

We obtain a smooth likelihood surface with small approximation error (figs. 5,
6, 8, 9, 10). Clearly, the usage of the full kernel density (33) yields bad results (fig.
4). In contrast, the conditional Markov representation (34) works well (fig. 3). One
can also use a conditional gaussian density in (34) or a linear GLS estimation of
the drift correction δfj and diffusion correction δΩj (see eqn. 35). If the diffusion
matrix is not corrected, biased estimates occur (fig. 7).

Importance sampling using an extended Kalman smoother (extended Kalman
sampling EKS, see (38)) yields very good results (fig. 9). Finally, the transition
kernel filter (TKF) with an Euler transition kernel is displayed, where the integration
range is {y0, y1, dy} = {0.7, 1.5, .0025}. This leads to a 321× 321 transition matrix
with 103 041 elements (see section 4.2.2). However, entries smaller than 10−8 where
set to 0, and only 15972 values were stored in a sparse array.

In this one dimensional example, the TKF is most efficient, while the EKS takes
4 times more CPU time. The methods based on the conditional Markov property
take much more CPU time, especially when using a kernel density estimate for
p(ηj+1|ηj, z) (see 34). In a higher dimensional state space Rp, however, the grid based
TKF soon gets infeasible, since we have Kp supporting points ηk, k = (k1, ..., kp) in
Rp. The transition kernel matrix is even of dimension Kp ×Kp.
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Figure 2: Langevin sampler. Importance density p̂2 =
∏

j φ(ηj+1, ηj|z)/φ(ηj|z). From
top, left: (1,1): trajectory ηjl over l (replications), (1,2): autocorrelation of ηjl, (1,3):
trajectories ηjl over j, (2,1): convergence of estimator p̂(z), (2,2): potential log p(ηjl)
over l, (2,3): average acceptance probability and rejection indicator for Metropolis al-
gorithm.
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Figure 3: Likelihood (left) and score (right) as a function of σ − 0.2, p̂2 = conditional
kernel density. Green lines: exact log-likelihood.
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Figure 4: Likelihood and score, p̂2 = full kernel density.
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Figure 5: Likelihood and score, p̂2 = conditionally Gaussian transition density.
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Figure 6: Likelihood and score, p̂2 = linear GLS estimation of drift and diffusion correc-
tions δfj, δΩj (eqn. 35).
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Figure 7: Likelihood and score, p̂2 = linear GLS, constant diffusion matrix.
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Figure 8: Likelihood and score, Langevin/Gauss-Resampling.
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Figure 9: Likelihood and score, extended Kalman sampling.
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Figure 10: Likelihood and score, transition kernel filter with Euler transition kernel.

5.2 Ginzburg-Landau model

The Ginzburg-Landau model

dY = −[αY + βY 3]dt+ σdW (t)

with measurement equation

Zi = Yi + εi,

at times ti ∈ {0, 2, 4, 6, 8, 10} is a well known nonlinear benchmark model, since the
stationary distribution

p0(y) ∝ exp[−(2/σ2)Φ(y)],

Φ(y) = 1
2
αy2 + 1

4
βy4

can exhibit a bimodal shape (Singer; 2002, 2011; Särkkä et al.; 2013). The true
parameters were set to the values {α0, β0, σ0} = {−1, 0.1, 2}, R = Var(εi) = 0.01
and the trajectories were simulated with a discretization interval δt = 0.1 using an
Euler-Maruyama approximation (cf. Kloeden and Platen; 1999)

Fig. 11–12 shows the simulated likelihood surface as a function of parameter
σ − σ0 using a Gaussian distribution as approximate importance density. The
mean E(ηj|Z) and covariance matrix Cov(ηj|Z) were computed either using an ex-
tended or an unscented Kalman smoother. For the conditional covariance matrix
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Figure 11: Ginzburg-Landau model. Extended Kalman sampling, M = 1000. Likelihood
(left) and score (right) as function of σ−σ0. Reference trajectory = smoother solution.
First row: Brownian bridge. 2nd row: Extended Kalman smoother. 3rd row: Unscented
Kalman smoother. Black line: transition kernel filter with Euler transition kernel.
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Figure 12: Ginzburg-Landau model. Extended Kalman sampling, M = 10000. Likeli-
hood (left) and score (right) as function of σ − σ0. Reference trajectory = smoother
solution. First row: Brownian bridge. 2nd row: Extended Kalman smoother. 3rd row:
Unscented Kalman smoother. Black line: transition kernel filter with Euler transition
kernel.
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Figure 13: Ginzburg-Landau model. First line, from left: Conditional mean ± standard
deviation: extended Kalman smoother, Langevin sampler, Gauss resampling, conditional
covariance matrix: extended Kalman smoother, Langevin sampler. 2nd line, Brownian
bridge. 3rd line, unscented Kalman smoother (see text).

Cov(ηj, ηj′ |Z) : (J + 1)p × (J + 1)p, two variants of the linearization can be used:
computation of the Jacobians ∂f(y)/∂y and ∂h(y)/∂y either along the filtered or
along the smoothed trajectory. Furthermore, one can set f ≡ 0 in the smoother,
which corresponds to a Brownian bridge (cf. Durham and Gallant; 2002). The error
bars were obtained using 10 likelihood surface replications with different random
seeds. Clearly, the Brownian bridge performs best, and the likelihood surface is
smooth as a function of the parameter (figs. 11 and 12, first line, right). This is in
contrast to methods based on particle filters (cf. Pitt; 2002; Singer; 2003). It should
be noted that not only the mean over the likelihood surfaces, but also each single
one is a smooth curve, which facilitates the usage in Newton type algorithms or in
Langevin samplers for Bayesian estimation.

The superiority of the Brownian bridge sampler can be understood from fig. 13.
The Kalman smoother (first line, left) tends to predict values in the potential wells of
Φ(y) (cf. Singer; 2005, 2008), whereas the exact smoothing solution computed from
the Langevin sampler (first line, second column) predicts more or less straight lines
between the measurements. This behaviour is exactly produced by the Brownian
bridge (second line), since the drift was set to f = 0. The unscented Kalman
smoother also gives a conditional mean similar to the Langevin sampler (3rd line,
left and middle).

Thus, the conditional mean given by the Brownian bridge and the unscented
Kalman smoother is (at least in this example) nearer to the exact smoothing solution
(Langevin sampler) than the Kalman smoother, producing a better approximate
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Figure 14: Ginzburg-Landau model. Likelihood of TKF, EKF, UKF and GHF as function
of σ − σ0.

importance density (38). This, in turn, improves the importance sampling results.
Since the extended Kalman sampler is based on an extended Kalman smoother,

it is interesting to inspect the likelihood surfaces produced by the EKF and other
integration based filters, such as the unscented Kalman filter (UKF) and the Gauss-
Hermite filter (GHF). The comparison with the exact TKF/ETK is displayed in fig.
14. It is seen that the integration based filters are superior to the Taylor based EKF.
Still, the likelihood surfaces strongly deviate from the exakt TKF solution (black
line).

As noted above, the EKF moment equation µ̇ = E[f(y)] ≈ f(µ) gives solutions
in the minima of Φ(y). This does not happen for the integration based equation
µ̇ = E[f(y)] ≈

∑
αlf(ηl), where µ tends to zero (cf. Singer; 2005, 2008). Therefore,

an integration based smoother should give better results, as is the case.
Table 1 serves to compare the ML-estimates given by the several estimation meth-

ods with the reference solution TKF/ETK. The likelihood function was maximized
using a quasi-Newton algorithm with numerical score and BFGS secant updates.
The standard errors were computed using the negative inverse Hessian (observed
Fisher information) after convergence. The results of the Kalman sampler with
M = 10, 000 replications are very similar to the reference solution TKF/ETK. A
smaller sample size (M = 1000) gives good results for the Brownian bridge sam-
pler, the unscented Kalman sampler and the Gauss-Hermite sampler. The extended
Kalman smoother leads to bad results in this case. The integration based filters
UKF and GHF produce somewhat biased ML estimates whereas the EKF, again,
performs worst, especially for parameter α. Clearly, this findings are only prelimi-
nary.

Other estimation methods for the importance density, such as kernel density
or regression methods, are very time consuming when a reasonable approximation
for the likelihood surface should be achieved. These methods are presently under
further study.
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true est std est std est std est std

TKF/ETK EKF UKF, κ = 0 GHF,m = 3

−1 −0.5005 0.5407 −0.1039 0.2432 −0.349 0.7421 −0.349 0.7421
0.1 0.0609 0.0568 0.0364 0.0415 0.0406 0.0642 0.0406 0.0642
2 1.6157 0.4739 1.543 0.3801 1.7353 0.7355 1.7353 0.7355

Extended Kalman sampling,M = 1000

EKS BBS UKS, κ = 0 GHS,m = 3
−1 −1.0676 0.3985 −0.4176 0.4457 −0.4176 0.4457 −0.4762 0.4357
0.1 0.1166 0.0439 0.0518 0.0464 0.0518 0.0464 0.0572 0.0424
2 1.73 0.3122 1.5631 0.4245 1.5631 0.4245 1.5969 0.4239

Extended Kalman sampling,M = 10, 000

EKS BBS UKS, κ = 0 GHS,m = 3
−1 −0.4864 0.4659 −0.4908 0.5061 −0.4501 0.4449 −0.4498 0.4468
0.1 0.0581 0.0437 0.06 0.0533 0.0555 0.0454 0.0554 0.0454
2 1.5882 0.4169 1.6101 0.4606 1.5899 0.4352 1.5888 0.4286

Table 1: ML estimates for several estimation methods. The transition kernel filter with
Euler transition kernel (TKF/ETK) (top, left) serves as reference value. EKF: extended
Kalman filter, UKF: unscented Kalman filter, GHF: Gauss-Hermite Kalman filter, EKS:
extended Kalman sampler, BBS: Brownian bridge sampler (f = 0), UKS: unscented
Kalman sampler, GHS: Gauss-Hermite sampler

6 Conclusion

We analytically computed the drift function of a Langevin sampler for the continuous-
discrete state space model, including a state dependent diffusion function. In the
continuum limit, a stochastic partial differential equation is obtained. From this, we
can draw random vectors from the conditional distribution of the latent states, given
the data. This sample can be used for the estimation of the unknown importance
density and in turn to the determination of a variance reduced MC estimator of
the likelihood function. Moreover, one obtains a numerical solution of the optimal
smoothing problem.

The unknown importance density was estimated from the sampler data using
kernel density and regression methods. Alternatively, a gaussian reference density
with suboptimal properties, but known analytical form was used. Methods based on
transition kernels and the Fokker-Planck equation generally gave good results, but
seem to be restricted to low dimensional state spaces. In the geometrical Brownian
motion model, well known from finance, all methods gave encouraging results.

However, in a strongly nonlinear system (Ginzburg-Landau model), estimation
methods for the importance density based on kernel density and regression meth-
ods performed disappointingly, whereas the extended Kalman sampler EKS (using
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a gaussian importance density determined by extended Kalman smoothers) gave
smooth likelihood surfaces near to the true ones.

In further work, the methods will be tested with simulation studies and extended
to higher dimensional models such as the 3 dimensional Lorenz model well known
from chaos theory.

More generally, one can compute variance reduced estimates of functionals in-
volving Itô processes such as the Feynman-Kac formula used in finance and quantum
theory (Singer; 2016).

Appendix: Continuum limit

The expressions in the main text were obtained by using an Euler discretization of the
SDE (1), so in the limit δt→ 0 one expects a convergence of ηj to the true state y(τj) (see
Kloeden and Platen; 1999, ch. 9). Likewise, the (J + 1)p-dimensional Langevin equation
(14) for ηjα(u) will be an approximation of the stochastic partial differential equation
(SPDE) for the random field Yα(u, t) on the temporal grid τj = t0 + jδt.

A rigorous theory (assuming constant diffusion matrices) is presented in the work of
Reznikoff and Vanden-Eijnden (2005); Hairer et al. (2005, 2007); Apte et al. (2007); Hairer
et al. (2011). In this section it is attempted to gain the terms, obtained in this literature
by functional derivatives, directly from the discretization, especially in the case of state
dependent diffusions. Clearly, the finite dimensional densities w.r.t. Lebesgue measure
loose their meaning in the continuum limit, but the idea is too use large, but finite J ,
so that the Euler densities p(η0, ..., ηJ) are good approximations of the unknown finite
dimensional densities p(y0, τ0; ...; yJ , τJ) of the process Y (t) (cf. Stratonovich 1971, 1989,
Bagchi 2001 and the references cited therein).

Constant diffusion matrix

First we consider constant and (nonsingular) diffusion matrices Ω. The Lagrangian (15)
attains the formal limit (Onsager-Machlup functional)

S = 1
2

∫
dy(t)′(Ωdt)−1dy(t) (51)

−
∫
f(y)′Ω−1dy(t) + 1

2

∫
f(y)′Ω−1f(y)dt. (52)

If y(t) is a sample function of the diffusion process Y (t) in (1), the first term (51) does
not exist, since the quadratic variation dy(t)dy(t)′ = Ωdt is of order dt. Thus we have
dy(t)′(Ωdt)−1dy(t) = tr[(Ωdt)−1 dy(t)dy(t)′] = tr[Ip] = p. Usually, (51) is written as the
formal expression 1

2

∫
ẏ(t)′ Ω−1ẏ(t)dt, which contains the (nonexisting) derivatives ẏ(t).

Moreover, partial integration yields

−1
2

∫
y(t)′Ω−1ÿ(t)dt (53)

so that C−1(t, s) = Ω−1(−∂2/∂t2)δ(t−s) is the kernel of the inverse covariance (precision)
operator of Y (t) (for drift f = 0; i.e. a Wiener process). Indeed, since

∂2/∂t2 min(t, s) = −δ(t− s), (54)
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the covariance operator kernel C(t, s) is

C(t, s) = Ω(−∂2/∂t2)−1δ(t− s) = Ω min(t, s).

Thus, p(y) ∝ exp[−1
2

∫
y(t)′Ω−1ÿ(t)dt] is the formal density of a Gaussian process Y (t) ∼

N(0, C).
In contrast, the terms in (52) are well defined and yield the Radon-Nikodym derivative

(cf. 17)

α(y) = exp
{∫

f(y)′Ω−1dy(t)− 1
2

∫
f(y)′Ω−1f(y)dt

}
. (55)

This expression can be obtained as the ratio of the finite dimensional density functions
p(yJ , τJ , ..., y1, τ1|y0, τ0) for drifts f and f = 0, respectively, in the limit δt→ 0 (cf. Wong
and Hajek; 1985, ch. 6, p. 215 ff). In this limit, the (unkown) exact densities can be
replaced by the Euler densities (5). Now, the terms of the Langevin equation (14) will
be given. We start with the measurement term (21), α = 1, ..., p

δ log p(z|y)/δyα(t) =

T∑
i=0

h′i•,αR
−1
i (zi − hi)δ(t− ti) (56)

where the scaled Kronecker delta (δjji/δt) was replaced by the delta function (see footnote
2). Clearly, in numerical implementations a certain term of the delta sequence δn(t) must
be used (cf. Lighthill; 1958). Next, the term stemming from the driftless part (18) is

−δS0/δyα(t) = Ω−1
α• ÿ(t) = Ω−1

α• ytt(t),

or Ω−1ytt(t) in matrix form, which corresponds to (53). The contributions of S1 are (cf.
19)

−δS1/δyα(t) = f(y)β,αΩ−1
βγ dyγ(t)/dt− Ω−1

αγdfγ(y)/dt.

The first term is of Itô form. Transformation to Stratonovich calculus (Apte et al.; 2007,
sects. 4, 9) yields

hαβdyβ = hαβ ◦ dyβ − 1
2hαβ,γΩβγdt (57)

dfα = fα,βdyβ + 1
2fα,βγΩβγdt = fα,β ◦ dyβ (58)

Thus, we obtain

−δS1/δyα(t) = f(y)β,αΩ−1
βγ ◦ dyγ(t)/dt− 1

2f(y)β,αβ

− Ω−1
αγf(y)γ,δ ◦ dyγ(t)/dt

= (f ′yΩ
−1 − Ω−1fy) ◦ yt(t)− 1

2∂y[∂y · f(y)]

where ∂y · f(y) = fβ,β = div(f). Finally we have (cf. 20)

−δS2/δy(t) = −f ′yΩ−1f
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and δy(t) log p(y(t0)) = ∂y0 log p(y0)δ(t − t0). Putting all together one finds the Langevin
drift functional (in matrix form)

−δΦ(y|z)
δy(t)

:= F (y|z)

=
T∑
i=0

h′iy(y)R−1
i (zi − hi(y))δ(t− ti)

+ Ω−1ytt + (f ′yΩ
−1 − Ω−1fy) ◦ yt

− 1
2∂y[∂y · f(y)]− f ′yΩ−1f

+ ∂y0 log p(y0)δ(t− t0)

and the SPDE (cf. Hairer et al.; 2007)

dY (u, t) = F (Y (u, t)|z))du+
√

2 dWt(u, t), (59)

where Wt(u, t) = ∂tW (u, t) is a cylindrical Wiener process with E[Wt(u, t)] = 0, E[Wt(u, t)
Ws(v, s)

′] = Ip min(u, v)δ(t − s) and W (u, t) is a Wiener field (Brownian sheet). See,
e.g. Jetschke (1986); Da Prato and Zabczyk (1992, ch. 4.3.3). The cylindrical Wiener
process may be viewed as continuum limit of Wj(u)/

√
δt, E[Wj(u)/

√
δt W ′k(v)/

√
δt] =

Ip min(u, v)δt−1δjk.

State dependent diffusion matrix

In this case, new terms appear. Starting with the first term in (25), one gets

−Ω−1
jαβδt

−2(ηj+1;β − 2ηjβ + ηj−1;β) → −Ω(y(t))−1 ◦ ÿ(t).

The second term in (25) contains terms of the form hj (ηj − ηj−1) which appear in a
backward Itô integral. Here we attempt to write them in symmetrized (Stratonovich)
form. It turns out, that the Taylor expansion (24) must be carried to higher orders.
Writing (for simplicity in scalar form)

Ω−1
j−1δηj−1 − Ω−1

j δηj := hj−1δηj−1 − hjδηj

and expanding around ηj

hj−1 = hj +

∞∑
k=1

1

k!
hj,k(ηj−1 − ηj)k

one obtains

hj−1δηj−1 − hjδηj = hj(δηj−1 − δηj) +

∞∑
k=1

(−1)k

k!
hj,kδη

k+1
j−1 . (60)

To obtain a symmetric expression, hj,k is expanded around ηj−1/2 := 1
2(ηj−1 +ηj). Noting

that ηj − ηj−1/2 = 1
2δηj−1 we have

hj,k =

∞∑
l=0

(1
2)l

l!
hj−1/2,k+lδη

l
j−1 (61)
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and together

hj(δηj−1 − δηj) +
∞∑

k=1,l=0

(−1)k(1
2)l

k! l!
hj−1/2,k+lδη

k+l+1
j−1 . (62)

Multiplying with δt−2 and collecting terms to order O(δt2) one gets the continuum limit

−Ω−1 ◦ ÿ − Ω−1
η ◦ ẏ2 − 1

24Ω−1
ηηηΩ

2. (63)

The last term in (25) is absorbed in the expression (29).
The continuum limit of the first two terms in the derivative of S1 (see (27) is

−f(y)β,αΩ(y)−1
βγ dyγ(t)/dt+ d[Ω(y)−1

αγfγ(y)]/dt.

Transforming to Stratonovich calculus (57–58) yields

−{f(y)β,αΩ(y)−1
βγ − [Ω(y)−1

αβfβ(y)],γ} ◦ dyγ(t)/dt+ 1
2 [f(y)β,αΩ(y)−1

βγ ],δΩγδ. (64)

Equation (28) yields

δS2/δyα(t) = f(y)β,αΩ(y)−1
βγ f(y)γ + 1

2f(y)βΩ(y)−1
βγ,αf(y)γ . (65)

The last term to be discussed is (29). Formally,

1
2δt
−2tr{Ω−1

,α [Ωdt− (dy − fdt)(dy − fdt)′]} = (66)
1
2tr{Ω−1

,α [Ωδt−1 − (ẏ − f)(ẏ − f)′]}.

From the quadratic variation formula (dy − fdt)(dy − fdt)′ = Ωdt it seems that it can be
dropped. But setting δηj − fjδt = gjzj

√
δt (from the Euler scheme, see (3)), one gets

X := 1
2δt
−1tr{Ω−1

j,αΩj (I − zjz′j)}

In scalar form, one has X := 1
2δt
−1Ω−1

j,αΩj (I − z2
j ) which is χ2

1-distributed, conditionally

on ηj . One has E[1− z2] = 0; Var(1− z2) = 1− 2 + 3 = 2, thus E[X] = 0 and Var[X] =
1
2δt
−2E[Ω−2

j,αΩ2
j ].

Therefore, the drift functional in the state dependent case is

−δΦ(y|z)
δy(t)

:= F (y|z)

= (56)− (63)− (64)− (65) + (66) + ∂y0 log p(y0)δ(t− t0)

Discussion

The second order time derivative (diffusion term w.r.t. t) Ω−1ytt in the SPDE (59) resulted
from the first term (51) in the Lagrangian corresponding to the driftless process (random
walk process). Usually this (in the continuum limit) infinite term is not considered and
removed by computing a density ratio (17) which leads to a well defined Radon-Nikodym
density (52). On the other hand, the term is necessary to obtain the correct SPDE.
Starting from the Radon-Nikodym density (55) for the process dY (t) = fdt + GdW (t)
at the outset, it is not quite clear how to construct the appropriate SPDE. Setting for
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simplicity f = 0 and dropping the initial condition and the measurement part, eqn. (59)
reads

dY (u, t) = Ω−1 Ytt(u, t)du+
√

2 dWt(u, t).

This linear equation (Ornstein-Uhlenbeck process) can be solved using a stochastic con-
volution as (A := Ω−1∂2

t )

Y (u, t) = exp(Au)Y (0, t) +

∫ u

0
exp(A(u− s))

√
2 dWt(s, t).

(cf. Da Prato; 2004, ch. 2). It is a Gaussian process with mean µ(u) = exp(Au)E[Y (0)]
and variance Q(u) = exp(Au)Var(Y (0)) exp(A∗u) +

∫ u
0 exp(As)2 exp(A∗s)ds where A∗ is

the adjoint of A. Thus the stationary distribution (u → ∞) is the Gaussian measure
N(0, Q(∞)) with Q(∞) = −A−1 = −Ω · [∂2

t ]−1, since A = A∗. But this coincides with
C(t, s) = Ω min(t, s), the covariance function of the scaled Wiener process G ·W (t) (see
(54); Ω = GG′). Thus, for large u, Y (u, t) generates trajectories of GW (t). More generally
(f 6= 0), one obtains solutions of SDE (1). A related problem occurs in the state dependent
case Ω(y). Again, the term

∫
dy′(Ωdt)−1dy yields a second order derivative in the SPDE,

but after transforming to symmetrized Stratonovich form, also higher order terms appear
(62, 63).

Moreover, the differential of Ω−1 in the Lagrangian (51-52) imports a problematic term
similar to (51) into the SPDE, namely 1

2(ẏ − f)′(Ω−1)y(ẏ − f), which can be combined
with the derivative of the Jacobian (cf. 66). Formally, it is squared white noise where the
differentials are in Itô form. A procedure similar to (61), i.e.

hj,k =
∞∑
l=0

(−1
2)l

l!
hj+1/2,k+lδη

l
j (67)

can be applied to obtain Stratonovich type expressions. Because of the dubious nature
of these expressions, only the quasi continuous approach based on approximate finite
dimensional densities and Langevin equations will we used in this paper.
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