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Abstract

This paper introduces a new method for online estimation and prediction
of states and parameters of nonlinear stochastic differential equations. In
this setup parameters are considered as random variables in a Bayesian
sense, which requires integration over parameter distributions. This is
accomplished by well suited quadratures.

The suggested procedure is incorporated into a state space architec-
ture, which allows for sequential calculation of likelihood functions. This
is done by normal correlation updates and prediction error decomposition.
The resulting EAP-Filter can process a variety of nonlinear problems, in-
cluding latent states. Additionally, estimates and predictions for system
states and parameters can be calculated online, without iterative loops.

Keywords: Expected a posteriori estimation; State space model; Maxi-
mum likelihood; Gauß ian Sum-Filter.

1. Introduction

Stochastic differential equations (SDEs) are an inherent part of recent financial
models. Especially diffusion problems, which are equivalent to stochastic dif-
ferential equations of the Itô-type, have become an extensive field of scientific
research. There are two key aspects related to this topic. Firstly, for nonlinear
problems the transition density has to be approximated in an adequate way,
because only in rare special cases there exists a closed form solution. Secondly,
the parameters of the diffusion model have to be estimated. Additionally, recent
research indicates that there may exist some micro structure noise, possibly re-
sulting from discretized market prices of assets and other trade based artifacts.
Hence, a measurement model should be taken into consideration, which leads
to a (nonlinear) filtering problem.

Since the first extension of the exact linear Filter (Kalman 1960) to the ex-
tended Kalman-Filter (Schmidt 1966) extensive progress has been accomplished.
The difference between particular procedures consists in the way, how they ap-
proximate the transition densities (or some properties of the transition densities,
like moments etc.) and how they deal with nonlinearities of the measurement
model. In financial applications nonlinear measurement models are of minor in-
terest so the approximation of transition densities should be focused. It is always
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possible, but time consuming, to simulate these densities via Monte Carlo (see
for example Jäckel 2002). Therefore it is often more appropriate to approximate
the unknown transition density, for example by a Gauß ian density. Methods
pursuing this strategy are Extended Kalman-Filter, Unscented Kalman-Filter
(Julier and Uhlmann 1997, 2004, Sitz et al. 2002, 2004), Gauß-Hermite-Filter
(Ito and Xiong 2000), DD1- & DD2-Filter (Nørgaard et al. 2000) and many
hybrids. Basically they approximate expectation values of the nonlinear drift
function in different ways, for example by Taylor -expansion, quadrature or by
applying finite differences. More sophisticated ideas involving non Gauß ian as-
pects of the transition density are for example Gauß ian Sum-Filters (Sorenson
and Alspach 1971, Ito and Xiong 2000), collecting nonlinear information from
parallelization of a whole set of Gauß ian filters. Another strategy is calculating
a finite dimensional matrix representation of the diffusion operator. Therefore
a complete set of orthogonal functions, in this case the Hermite-polynomials,
is required. Several Methods have been proposed in this context. Aït-Sahalia
(2002) calculates a closed-form solution involving higher moments for short time
steps. Singer (2006) derived ordinary differential equations for higher order mo-
ments. Zhang et al. (1997) used distributed approximating functionals (DAFs)
to obtain an orthogonal series representation of Diracs delta function. All meth-
ods based on orthogonal series expansion suffer from the same problems; it is
exceedingly difficult to apply them on multivariate problems and an inherent
feature of the finite orthogonal series approximation is the possible occurrence
of negative values for the resulting density function. Remarkably Daum (1986)
was able to derive an exact nonlinear filter for a small class of diffusion problems
extending the work of Beneš (1981, 1985).

Another important question in financial applications is that of parameter
estimation. The natural way to accomplish this task inside a Gauß ian filter
framework is using the prediction error decomposition (Schweppe 1965), which
is a byproduct of the sequential filter update, for maximum likelihood estima-
tion. Unfortunately the likelihood is a complex nonlinear function of the data
and therefore has to be maximized numerically, that is, the whole observation
series has to be filtered in every step of the optimization procedure. For a
large number of parameters this is a computationally demanding task, not well
suited for online estimation and prediction. Alternatively, drift parameters can
be estimated in a Bayesian framework by extension of the state space. This
approach does not require iterative constructions but it works only for drift
parameters because of structural properties of the Kalman-update (see Maz-
zoni 2007, chap. 5.5). More generally, the diffusion parameters of the SDE are
squared inside the Fokker-Planck -equation and therefore do not provide linear
correlation (Grothe and Singer 2006). Non Gauß ian filters can overcome this
drawback (Singer 2008) but suffer from the above mentioned handicaps and re-
quire a more general measurement update, based directly on the Bayes-formula.

In this paper a new method for parameter and state estimation is suggested
that does not require iterative loops, combining the advantage of sequential
filter designs with asymptotic properties of maximum likelihood estimation. The
paper is organized as follows: Section 2 introduces the theoretical basics and
shows which strategies are applied. In section 3 the performance of the concept is
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surveyed with simulation studies in different scenarios. In section 4 the proposed
method is tested with real data for the Dow Jones Euro Stoxx 50 index. Section
5 concludes the results with a brief discussion.

2. Formal Derivation

The point of origin for any further step is the stochastic (Itô-) differential equa-
tion

dxt = f(xt, t, ψ)dt+ g(xt, t, ψ)dWt, (1)

with drift vector f , diffusion matrix g and a vector of independent Brownian
motions Wt. In the following we assume that all conditions guaranteeing exis-
tence and uniqueness of a solution are satisfied as needed. The time dependency
is written as subscript to clarify notation. Further we presume the Itô-process
(1) autonomous, because an explicit time dependency of drift or diffusion terms
can always be eliminated by extension of the state space. The parameter set
ψ is usually treated as a fixed but unknown (constant) vector that has to be
estimated. Bayesian theory suggests that this point of view may be to restric-
tive and consequently allows for a distribution P (ψ) of the parameter vector.
This distribution embodies the uncertainty about the parameter values due to
incomplete knowledge. If we follow this idea consequently, we have to accept
that the Brownian motion is not the only random source of the increment dxt,
but that it is blurred in some way by the distribution of ψ. Hence, we can calcu-
late an expectation, which means integrating (1) with respect to the unknown
distribution of ψ

Eψ[dxt] =
∫

Ψ
f(xt, ψ)dP (ψ)dt+

∫
Ψ
g(xt, ψ)dP (ψ)dWt. (2)

The syntax Eψ[. . .] indicates that the expectation is calculated regarding the
parameter distribution. Now the basic idea is to approximate the integrals in
(2) by quadrature in order to make the problem available for a Gauß ian Sum-
Filter architecture. This can be seen easily if we write the m-point quadrature
for (2)

Eψ[dxt] ≈
m∑
j=1

wj
[
f(xt, ψj)dt+ g(xt, ψj)dWt

]
=

m∑
j=1

wjdxjt . (3)

The quadrature points and weights are indicated by contravariant index in order
to avoid confusion with notation of time dependency. Equation (3) suggests
that the estimation problem can be treated as weighted sum over m single
SDEs/diffusions, located at different points in the parameter space Ψ. But
which quadrature should be used? Because we do not know anything about
the distribution of ψ we have to make some reasonable assumptions. In most
cases we are interested at least in estimating the first two moments, because
with that information we have access to the most important characteristics of
the unknown distribution.
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2.1. Unscented Transform

Julier and Uhlmann (1997) introduced a quadrature called unscented transform
(UT), operating with the smallest possible set of quadrature points (they call
this set sigma points) that reproduces the first and second moment correctly.
For an n-dimensional vector this quadrature takes m = 2n+ 1 points

ψj = µψ + sgn[j]
√
n+ κS|j| for j = −n, . . . , n (4a)

with Sj indicating the j-th column of the Cholesky-root resulting from the
decomposition Σψ = SS′. The corresponding weights are

w0 =
κ

n+ κ
and wj =

1
2(n+ κ)

for j 6= 0. (4b)

κ is a free scaling parameter and the quadrature sum runs from −n to n. Julier
and Uhlmann (1997) showed that the first and second moment is reconstructed
correctly if calculated in the usual way from the weighted sum of quadrature
points.

The unscented transform is attractive in two ways. Firstly, it requires only a
very small set of quadrature points, the procedure is of order O(n), and therefore
guarantees efficient calculations in high dimensional parameter spaces. Secondly,
very few assumptions about the distribution of ψ are necessary, merely existence
and finiteness of the first two moments are required.

2.2. Gauß-Hermite Quadrature

Applying Gauß-Hermite quadrature requires more assumptions, but its theoret-
ical content is stronger than that of the unscented transform. If we are given the
first two moments of an unknown distribution, then the Gauß ian distribution
fulfills the maximum entropy criterion. In other words, given two moments,
the least manipulative distribution, regarding the information available, is the
Gauß ian. Making this assumption we can write (2) as expectation integral with
a normal density φ(ψ) = N(ψ;µψ,Σψ) inside

Eψ[dxt] =
∫

Ψ
f(xt, ψ)φ(ψ)dψdt+

∫
Ψ
g(xt, ψ)φ(ψ)dψdWt. (5)

Such integrals can be solved by Gauß-Hermite quadrature of the general form∫
Ψ
h(ψ)φ(ψ)dψ ≈

m∑
j=1

wjh(Sψj + µψ), (6)

with a continuous function h and S resulting from the decomposition Σψ = SS′.
The quadrature points ψj are n-tuples of the roots of univariate Hermite polyno-
mials and the weights wj are products of the one-dimensional weight functions.
Both quantities can be calculated from the eigensystem of a particular tridiag-
onal matrix (see Golub 1973). The quadrature (6) is exact, if the integration
domain is Ψ = Rn and h is a polynomial of degree k ≤ 2m− 1.
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The Gauß-Hermite quadrature has a strong theoretical rationale, but it
requires more assumptions about the unknown distribution of ψ. Furthermore
it is of order O(mn), which means, if we consider a five-dimensional parameter
space and three quadrature points per dimension for example, we are dealing
with 243 quadrature points in a Gauß-Hermiteian framework. On the other
hand, the unscented transform manages the quadrature with 11 points.

2.3. Calculating Transition Moments

At this point it might not be quite obvious, why one should treat parameters as
random variables without dynamics and spend efforts in approximating expec-
tations by discretizing the parameter space. The answer is related to the usual
procedure of parameter estimation in the Kalman-Filter framework. Schweppe
(1965) showed that the measurement update provides a prediction-error decom-
position, from which the likelihood can be computed. Thus, the Kalman-Filter
may not provide update information about extended state variables without
linear correlation, but it provides the correct likelihood. Equation (3) indicates
that the original SDE (and its corresponding diffusion) can be treated approx-
imately as expectation regarding the parameter distribution, and therefore, as
weighted sum over a number of different SDEs located at particular points in
the parameter space. Each of these SDEs provides a different likelihood in every
update step and delivers information about the parameters. Hence, we can use
a Gauß ian filter design, which means propagating only the first two moments in
time and applying the Kalman-update, which is stable and easy to implement.
The possibly nonlinear information about the parameters is gained from the
weighted ensemble likelihood.

Propagating moments in time is easy for linear systems, but an exceedingly
difficult task in nonlinear cases. In this paper a method is suggested unifying
the stable and economic properties of the Extended Kalman-Filter and the
flexibility of modern particle filters (UKF, GHF etc.). The starting point is the
Fokker-Planck -equation, which governs the diffusion process corresponding to
the SDE (1)

∂

∂t
p(x, t) = − ∂

∂xi
fi(x, t)p(x, t) +

1
2

∂2

∂xi∂xj
Ωij(x, t)p(x, t), (7)

or each single SDE of the quadrature ensemble, respectively. p(x, t) is the prob-
ability density of the random process x at time t with Ω = ggT on the right
hand side of (7). The dependency of the parameter vector ψ is suppressed
for simplicity. Further, Einsteins sum-convention has been used, indicating a
sum over all elements in terms containing identical indices. To simplify further
manipulations (7) is rewritten in a compacter form

∂

∂t
p(x, t) = LFP p(x, t), (8)

with the Fokker-Planck -operator LFP according to (7). For small times ∆t� 1
the formal solution of the partial differential equation (8) can be approximated

p(x, t+ ∆t) = eLFP ∆tp(x, t). (9)
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The exact solution of (8) includes integration over LFP in the exponent of (9).
This integral is approximated by a rectangle. In order to evaluate the solution,
the exponential has to be expanded into a power series which unfolds multi
derivative effects of the Fokker-Planck -operator. But we are mainly interested
in propagating the moments of p(x, t) and therefore, we can take advantage of
(9) to obtain an equation for the expectation at t+ ∆t

µ(t+ ∆t) =
∫
xeLFP ∆tp(x, t)dx = E

[
eL

†
FP ∆tx

]
with

L†FP = fi(x, t)
∂

∂xi
+

1
2
Ωij(x, t)

∂2

∂xi∂xj
.

(10)

The adjoint Fokker-Planck -operator L†FP is the Kolmogoroff -backward-
operator, which is the infinitesimal generator of the Markov ian semigroup (cf.
Aït-Sahalia 2002). Equation (10) can be easily verified by applying partial in-
tegration. The expectation is evaluated regarding p(x, t), which is Gauß ian by
definition inside a Gauß ian filter. Now we can expand the exponential into
a Taylor -series. This is done up to second order to enhance accuracy and to
obtain nonlinear correction terms

µ(t+ ∆t) = µ(t) + E[f(x, t)]∆t+ E
[
fi(x, t)

∂

∂xi
f(x, t)

]∆t2

2

+ E
[
Ωij(x, t)

∂2

∂xi∂xj
f(x, t)

]∆t2

4
.

(11)

Again, Einsteins sum-convention is used in (11). The first two terms are iden-
tical to the EKF Euler -step because they result from linear expansion of the
backward-operator, but there are additional correction terms of order O(∆t2),
promising a better adjustment in nonlinear cases.

We are still left with expectation integrals regarding p(x, t). Because we
treated the unknown density Gauß ian, one possible strategy is to approximate
the integrals by Gauß-Hermite-Quadrature again. A different course of action
is suggested here for the following reason. The Gauß-Hermite-quadrature is
best suited for polynomials but we cannot control the character of nonlineari-
ties that may occur. Possibly we are dealing with an exponential, which can be
expanded into an infinite series generating polynomials of any degree. Therefore
we would have to apply an adequate number of quadrature points, which can be
time-consuming if the state space is high-dimensional. Hence, the expectations
in (11) are expanded into a linear Taylor -series around µ(t), corresponding to
the idea of the Extended Kalman-Filter. If we further restrict tensor dimen-
sions, resulting from differentiating vectors and matrices, to three, we obtain an
analytical formula for the Euler -step of the state expectation

µt+∆t = µt + f(µt)∆t+A(µt)f(µt)
∆t2

2

+∇⊗A(µt) vec
[
A(µt)Σt +

1
2
Ω(µt)

]∆t2

2
,

(12)

with the Jacobian A = ∂
∂xf(x), the gradient vector ∇ =

(
∂
∂x1

, . . . , ∂
∂xn

)
and ’⊗’

representing the ordinary (right handed) Kronecker -product. The vec-operator
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partitions an arbitrary matrix into a single vector column by column (see Mag-
nus and Neudecker 2007, chap. 2.4). Equation (12) can still be easily computed
by vector and matrix products and therefore is very efficient for implementation
purposes. Nevertheless, the term A(µt)Σt may be neglected because it is po-
tentially hazardous. The reason will become clear immediately, if we derive the
appropriate formula for short time propagation of the state expectation error.

The state expectation error is a covariance matrix which means, it is positive
definite by definition. This property is not necessarily preserved if we derive
the approximation formula as sketched above. In order to guarantee positive
definiteness only second order terms arising from outer products should be kept.
After algebraic manipulations analog to (10) and (11) we obtain the short time
propagation formula for the state expectation error

Σt+∆t =
(
I +A(µt)∆t

)
Σt(I +A(µt)∆t

)T
+ Ω(µt)∆t+ f(µt)fT (µt)∆t2.

(13)

This formula obviously generates a positive definite update for Σt but a few
second order correction terms are neglected. These ghost-corrections are terms
potentially reducing Σt+∆t and therefore approximation (13) may be burdened
with significant errors for large times. Thus, the Σt-term in (12) may have a
hazardous influence particularly in long range scenarios.

2.4. Calculating Observation Updates

With the time update equations (12) and (13) and any quadrature (3), we have a
weighted ensemble of priori moments for different parameter combinations. This
is a Gauß ian Sum-Filter setup (see Sorenson and Alspach 1971, Tanizaki 1996,
chap. 4.2). Following Schweppe (1965), the likelihood of the linear observation
yi = Hix

j
i + εi at ti can be expressed as prediction error decomposition

Lji =
1√

det
[
2πΓji

]e− 1
2
νT Γ−1νj

i , (14a)

with
νji = yi −Hiµ

j
i|1:i−1 and Γji = HiΣ

j
i|1:i−1H

T
i +Ri, (14b)

where Ri is the covariance of the measurement error εi ∼ N(0, Ri). The a
priori moments have to be considered conditioned on the information from ob-
servations available up to the present time. This is indicated by the condi-
tional subscript. Now by updating the quadrature weights along the particular
likelihoods, the contribution of each parameter combination can be calculated.
Sorenson and Alspach (1971) proved that the weights are updated along

wji =
wjLji
wTLi

, (15)

with Li = (L1
i , . . . , L

m
i )T . For each single parameter vector (quadrature vector),

the observation update is performed with the well known Kalman-Filter formula
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Kj
i = Σj

i|1:i−1H
T
i

[
Γji

]−1 (16a)

µji|1:i = µji|1:i−1 +Kνji (16b)

Σj
i|1:i =

(
I −Kj

iHi

)
Σj
i|1:i−1 (16c)

with the identity matrix I. The Kalman-update is simple and restricted to
Gauß ian priors and observation densities (normal correlation update), but it is
also stable and efficient in computation.

2.5. Resampling

At this point two possible choices for the further course of action are avail-
able. On the one hand, one can calculate the new weights for the parameter
quadrature along (15) and proceed with this new weights and the particular
posterior moments calculated from (16a) to (16c). On the other hand a resam-
pling step can be conducted which may turn out beneficial. The principal reason
for resampling is the problem of weight degeneration, known from Monte Carlo
simulation methods. Additionally, if no resampling is applied, the locations of
the quadrature points for the parameter expectation integral are not altered,
which is crucial, if the initial parameter density is non informative. In this case
the variance and hence the spread of the quadrature points is very large, which
may affect the state estimation.

Thus, the posterior moments after resampling can be calculated as weighted
arithmetic mean

µi|1:i =
m∑
j=1

wjiµ
j
i|1:i (17a)

Σi|1:i =
m∑
j=1

wjiΣ
j
i|1:i. (17b)

For the posterior moments of the parameter distribution one obtains after re-
sampling

E[ψi] =
m∑
j=1

wjiψ
j
i−1 (18a)

Cov[ψi] =
m∑
j=1

wji
(
ψji−1 − E[ψi]

)(
ψji−1 − E[ψi]

)T
. (18b)

There exists a significant difference between state and parameter estimation,
indicated in the notation of the appropriate moment equations. Because the
driving process is formulated as stochastic differential equation, state estimates
are available at any time, especially inside sampling intervals. Parameters are
treated in a Bayesian way as random variables without dynamics. Therefore
information can be obtained solely associated with new sampling information
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(expected a posteriori estimation). The state expectation and the expectation
error are solutions of moment differential equations in a continuous time domain,
whereas moments of the parameter vector occur as time series. The whole
algorithm is summarized in figure 1 for convenience.

0. Initialization: µ0, Σ0, E[ψ0], Cov[ψ0]

1. Generate quadrature points ψj
i and weights wj

i with j = 1, . . . ,m

2. Time-updates between observations ti−1 ≤ t < ti for i = 1, . . . , T

µj
t+∆t = µj

t + f(µj
t , ψ

j
i−1)∆t+A(µj

t , ψ
j
i−1)f(µj

t , ψ
j
i−1)

∆t2

2

+∇⊗A(µj
t , ψ

j
i−1) vec

[
A(µj

t , ψ
j
i−1)Σ

j
t +

1

2
Ω(µj

t , ψ
j
i−1)

]∆t2

2

Σj
t+∆t =

(
I +A(µj

t , ψ
j
i−1)∆t

)
Σt(I +A(µj

t , ψ
j
i−1)∆t

)T

+ Ω(µj
t , ψ

j
i−1)∆t+ f(µj

t , ψ
j
i−1)f

T (µj
t , ψ

j
i−1)∆t

2

3. Measurement- and weight-updates at t = ti

νj
i = yi −Hiµ

j
i|1:i−1

Γj
i = HiΣ

j
i|1:i−1H

T
i +Ri

Lj
i =

1√
det

[
2πΓj

i

]e− 1
2 νT Γ−1ν

j
i

Kj
i = Σj

i|1:i−1H
T
i

[
Γj

i

]−1

wj
i =

wj
i−1L

j
i

wT
i−1Li

µj
i|1:i = µj

i|1:i−1 +Kνj
i

Σj
i|1:i =

(
I −Kj

iHi

)
Σj

i|1:i−1

4. Resampling posterior moments

µi|1:i =

m∑
j=1

wj
iµ

j
i|1:i

Σi|1:i =

m∑
j=1

wj
i Σ

j
i|1:i

E[ψi] =

m∑
j=1

wj
iψ

j
i−1

Cov[ψi] =

m∑
j=1

wj
i

(
ψj

i−1 − E[ψi]
)(
ψj

i−1 − E[ψi]
)T

5. If i < T , increment i and proceed with 1.

Figure 1: EAP-Filter
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3. Performance and Properties of the EAP-Filter

The first example scenario for the EAP-Filter is the geometric Brownian motion
(GBB)

dxt = µxtdt+ σxtdWt. (19a)

The GBB is important for two reasons. At first, it is a fundamental model
for stock price changes, used for example in the Black-Scholes-model for option
pricing (Black and Scholes 1973). At second, it is a very simple model, which al-
lows to pinpoint the properties of the suggested procedure in a very transparent
way.

Because the real stock price is not observed exactly, it is rounded up to the
second decimal place, a measurement model needs to be involved

yi = xti + εi. (19b)

Properly, the observation error εi is uniformly distributed, but in order to avoid
complications it is assumed Gauß ian with variance Ri = 1.2×10−5, minimizing
the squared integrated distance between the distribution functions.

3.1. Filtering Parameters of the GBB

Both parameters in (19a) can be estimated inside the traditional Kalman-Filter
with maximum likelihood. The price to pay is numerical maximization of the
likelihood-function which is a computationally demanding task in case of an
extensive number of parameters. Thus, numerical maximization procedures are
to be avoided here. Alternatively, parameters can be estimated in a Bayesian
way by extension of the state space

d

xtµ
σ

 =

µxt0
0

 dt+

σxt0
0

 dWt. (20)

Obviously, we are now dealing with a nonlinear drift and diffusion function be-
cause state variables are multiplied with each other. This is not a vital problem
because the original Kalman-Filter can be extended by Taylor -expansion to the
Extended Kalman-Filter (Schmidt 1966), which is fully sufficient for this task.

Another problem occurs, which cannot be corrected in the traditional
Gauß ian filter framework. To illustrate the nature of this problem a stock
price process is simulated with annual drift µ = 5% and volatility σ = 20%.
The simulated process is observed daily for T = 2500 days. Figure 2 shows the
filter-solution for the extended state variables according to (20). The Filter was
initialized with E[µ, σ] = (0.1, 0.1)T and Cov[µ, σ] = I. It is easily seen that
the drift is estimated well but no information about the volatility is gained from
observation. Figure 2 additionally provides the true parameter value (green)
and HPD-bands with ±2 standard deviations (red, yellow) around the mean
(blue).

The same estimation problem can be treated with the outlined EAP-Filter.
Here, no artificial extension of the state space is necessary in order to estimate
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Figure 2: Filtered Parameters of the GBB (Extended Kalman-Filter)

the parameters without iterative procedures. A minor modification of the GBB
is suggested to ease quadrature operations. Because volatility is always positive,
σ is transformed into exp[h], where h is the parameter to be estimated. Thus,
the GBB reads

dxt = µxtdt+ ehxtdWt with eh = σ. (21)

With this modification the admissible range for the parameters is −∞ to∞ and
the quadrature rules discussed above can be applied. Alternatively, a Gauß-
Laguerre quadrature could have been used for the original volatility, ranging
from 0 to ∞.

Figure 3 illustrates the parameter estimation for the geometric Brownian
motion (21), where a Gauß-Hermite quadrature with m = 3 was used. The ini-
tial parameter distribution was assumed Gauß ian with E[µ, h] = (0.1, log[0.1])T

and Cov[µ, h] = I. According to Figure 2, the true parameter is given by a green
line. Because σ is distributed asymmetrically (log-normal), the 2.5%, 50% and
97.5% quantiles are given (yellow, blue and red). Obviously, the mean estima-
tion shows the same characteristics as in the conventional case (Figure 2), but
now an online estimation for the volatility is available. The true parameters
are covered by the 95% HPD-bands (High Probability Density) of the filtered
parameter densities.
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Figure 3: Filtered Parameters of the GBB (EAP-Filter)
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3.2. Filtering Latent States of Stochastic Volatility Models

Another drawback of conventional Gauß ian filters is the inability to track and
predict latent states, if they occur only in the diffusion function of the original
model. An example for such models are those with stochastic volatility (cf.
Taylor 1994)

dxt = µxtdt+ ehtxtdWt (22a)
dht = λ(h̄− ht) + νdVt. (22b)

Equation (22b) is an ordinary mean reversion process with mean reversion speed
λ, mean reversion level κ and a Brownian motion Vt, independent of Wt. This
premise can be relaxed in order to deal with a leverage effect (e.g. Heston 1993).
The volatility σt = exp[ht] now is a state variable with its own stochastic dynam-
ics. Because it is not observed, information is only gathered from (simulated)
movement of the observable stock price. This information is sparse, so the mean
reversion speed and diffusion coefficient are given with (λ, ν) = (0.05, 0.05). The
latent state, drift coefficient µ and mean reversion level h̄ are estimated; the UT-
method with scaling parameter κ = 1 was used as quadrature rule. The results
are shown in figure 4. Initial conditions and organization of the illustrations are
analog to the previous example.

Obviously the latent state (upper) is estimated adequately. The major char-
acteristics of the simulated trajectory are tracked by the state expectation and
the 95% HPD-band covers the trajectory almost everywhere. Nevertheless, the
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Figure 4: Filtered Latent State and Parameters of the SVola Model
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lack of information due to non observability of the volatility process results in
large quantile spans for the estimated mean volatility level σ̄ = exp

[
h̄
]

(lower
right). The parameter estimation method suggested here is far more sensitive
to sparse information than maximum likelihood procedures. This topic is worth
a brief discussion.

3.3. Properties of Parameter Estimation

The advantage of the method suggested above, is the dispensability of iterative
loops. The price to pay is on the one hand, the parallelization of a whole
diffusion ensemble and on the other hand, the dependence on prior distributions
of the parameter vector. The latter is crucial, if the prior distribution is non
informative. This property is worth a closer look.

Because the parameter vector is calculated as weighted average of likelihood
contributions and the likelihood itself at time ti is conditioned on the available
information provided by the data y1:i, the estimator ψ̂i is an expected a poste-
riori estimator, ψ̂i = E[ψ|y1:i]. The maximum likelihood estimator is composed
in a completely different way. Neglecting the prior distribution, it is calculated
as

ψ̂ML = arg max
ψ

T∑
i=1

l(xi, ψ|y1:i). (23)

Here, l(. . .) indicates the log-likelihood function. From (23) one can easily see
that the ML-estimator is engineered to find a parameter set, which is best suited
for the whole sequence of ascending segments of the trajectory. Because the
specific segments are weighted equally, it is robust against outliers, no matter
where they appear. The expected a posteriori estimator (EAP) is based on
the present observation sequence y1:i only, and hence uses less information than
the ML estimator. Heuristically the behavior of the EAP-estimator can be
understood as follows: the process is filtered with changing parameter values,
which are adjusted after every observation. As the observation count increases,
adjustments become smaller, because more information of the past is stored in
the present value of ψ, resulting in sharper localized prior densities.

This strategy avoids iterative constructions but it can also cause problems,
if initial distributions are non informative. In such cases outliers can cause se-
rious problems, because rapid adjustments of the EAP-estimator may be the
consequence. This can vitally threaten the algorithm due to numerical desta-
bilization. A very cheap and effective trick to avoid this kind of problem is to
calculate an exponentially smoothed update of the parameter estimator

ψ̃i = (1− λi)ψi + λiψ̃i−1 with 0 ≤ λi < 1. (24)

The weight coefficient λi is indicated as function of time ti, because with in-
creasing observations, the available information grows and the adjustments can
be trusted to be more moderate. So λi can be defined as monotonic function
with limi→∞ λi = 0. The resulting stabilized parameter estimates can be used
either directly or as priors for another unpatched estimation cycle.
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4. Application to Financial Market Data

To provide a real world application to the outlined estimation algorithm, finan-
cial time series of the Dow Jones Euro Stoxx 50 index and the corresponding
volatility, estimated from implied volatility of available index options (figure 5)
are analyzed1. The example data is observed daily and ranges from 03/18/2003
to 03/17/2008. The model under consideration is the stochastic volatility model
(22a) and (22b), discussed in the previous section, with the extension of corre-
lated noise processes

dWtdVt = ρdt. (25)

Because correlation can take values only in the interval [−1, 1], the transfor-
mation ρ = tanh[%] is applied, where % again ranges from −∞ to ∞. Al-
ternatively ρ can be treated with Gauß-Legendre quadrature in the original
integration domain. Figure 6 shows the parameter density estimates for the
Dow Jones Euro Stoxx 50 data. A Gauß-Hermite scheme with four quadra-
ture points was used. The initial distribution was assumed Gauß ian with
µψ = (0.1, 0.05, 0.2, 0.05,−0.5)T and Σψ = 0.1× I.

Obviously parameters and states are estimated well. State predictions can
be seen in Figure 5 including the usual quantiles of 2.5%, 50% and 97.5%.

5. Conclusions

A new method, based on recursive Gauß ian Sum-Filter architecture, was intro-
duced, allowing online estimation of states and parameters of a stochastic dif-
ferential equation model with discrete noisy observations. The method contains
two innovations; firstly the idea of treating parameters as random variables and
calculating an expected a posteriori estimate by quadrature of the parameter
space, secondly a sophisticated derivation of analytical nonlinear time update
equations for the state expectation and its error covariance. This update was
calculated by adjoining the Fokker-Planck operator and Taylor expansion up to
second order terms, guaranteeing a positive semidefinite update for the expec-
tation error covariance.

1The data is available at http://www.stoxx.com.
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Figure 5: Dow Jones Euro Stoxx 50 Index and Volatility
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Figure 6: Estimated Parameter Densities for Dow Jones Euro Stoxx 50

The EAP-Filter has proven well suited both in simulation and in applica-
tion to real financial data. It is theoretically attractive, because unlike other
strategies for online estimation, like artificial extension of the state space, it
separates the role of system states and parameters very clearly. Furthermore,
EAP-Filtering is very economical, because the state space remains unextended
and no iteration has to be conducted in order to maximize some kind of opti-
mization function. Therefore it is best suited for applications where estimates
and predictions have to be calculated very fast (online) and prior information
is available.
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