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A Genetic Algorithm for the Two-Dimensional  
Knapsack Problem with Rectangular Pieces  

Andreas Bortfeldt, Tobias Winter  

Abstract: 

Given a set of rectangular pieces and a rectangular container, the two-dimensional knapsack 
problem (2D-KP) consists of orthogonally packing a subset of the pieces within the container such 
that the sum of the values of the packed pieces is maximized. If the value of a piece is given by its 
area the objective is to maximize the covered area of the container. A genetic algorithm (GA) is 
proposed addressing the guillotine case of the 2D-KP as well as the non-guillotine case. Moreover, 
an orientation constraint may optionally be taken into account and the given piece set may be 
constrained or unconstrained. The GA is subjected to an extensive test using well-known 
benchmark instances. In a comparison to recently published methods the GA yields competitive 
results. 
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A Genetic Algorithm for the Two-Dimensional  
Knapsack Problem with Rectangular Pieces 

Andreas Bortfeldt, Tobias Winter 

1 Introduction 

Two-dimensional cutting and packing problems (C&P) are highly relevant in production and 
logistics. 2D cutting problems are found in customizing material in the glass, steel, wood and paper 
industries. 2D packing problems result, for example, where goods have to be packed on pallets in 
horizontal layers. And the space-saving arrangement of adverts on the pages of newspapers, or the 
effective positioning of components on chips when designing integrated circuits, lead to 2D packing 
problems.  

This paper deals with the two-dimensional knapsack problem (2D-KP) with a set of small 
rectangular pieces and a larger rectangle, known as a container. The search is for a feasible 
arrangement of a subset of the pieces in the container that maximizes the total value of the packed 
pieces. If the value of a piece is given by its area, the aim is to maximize the covered area of the 
container. An arrangement of pieces, also known as a packing plan, is regarded as feasible if each 
piece is placed orthogonally (i.e. parallel to the container edges), is completely inside the container 
and if no two placed pieces overlap.  
The type of the piece is defined by its two side dimensions and by the value; two copies of a type 
therefore coincide with regard to the features referred to. The store of pieces is given by a set of 
piece types, and there are three variants of the 2D-KP in the literature with regard the number of 
copies per type (cf. Beasley 2004):  

(1) Unconstrained knapsack problem (UC) 
With the unconstrained 2D-KP the number of copies per type is not fixed. A packing plan can 
therefore have any number of pieces of a type.  

(2) Constrained knapsack problem (C) 
With the constrained 2D-KP an upper limit of copies Pi (Pi > 0) is fixed for at least one piece type i. 
A packing plan may therefore contain maximal Pi rectangles of type i. 

(3) Doubly-constrained knapsack problem (DC) 
With the doubly-constrained 2D-KP an upper limit of Pi copies is fixed for at least one piece type i 
and a lower limit Qj is fixed for at least one piece type j (Pi > 0, Qj > 0). A packing plan may 
therefore have at the most Pi rectangles of type i and at the same time must contain at least Qj 
rectangles of type j (where applicable, Pi ≤ Qi must apply). 

With regard to the stock of small objects, with C&P problems it is usual to differentiate between the 
variants homogeneous (only one piece type), weakly heterogeneous (few piece types, many copies 
per type) and strongly heterogeneous (many piece types, a few copies per type). In accordance with 
these variants differentiated problem types as well are introduced with the new C&P typology from 
Wäscher et al. (2007). In the given case there is a two-dimensional Single Large Object Placement 
Problem (SLOPP), with a weakly heterogeneous stock of pieces, and a Single Knapsack Problem 
(SKP) with an strongly heterogeneous stock of pieces. The following relations appear to apply: with 
the stock of pieces variants (C) and (DC) there may be both a SLOPP and a SKP, whereas with 
variant (UC) only a SLOPP should be assumed.  
In addition, two constraints above all are included in the problem in the literature:  
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(C1) Orientation constraint  
While turning the pieces by 90° in the container area is generally feasible, the orientation constraint 
fixes the orientation of all pieces and forbids their rotation.  

(C2) Guillotine cutting constraint  
This constraint demands that all placed pieces are reproducible through a series of guillotine cuts. 
As is known, a guillotine cut through a rectangle runs from one edge to the opposite edge and 
parallel to the other two edges of the rectangle.  

Both the orientation constraint and the guillotine cutting constraint are found with the customizing 
of material and are contingent upon, for example, the surface quality of the material (e.g. as a result 
of rolling) or of the cutting technology used. The orientation constraint is also found with packing 
problems, for example, the draft layout of pages of newspapers referred to above. 

Four subtypes of the 2D knapsack problem can be differentiated for a given variant of the stock of 
pieces taking account of the constraints (C1) and (C2) (cf. Lodi et al. 1999):  
- RF: Pieces can be rotated by 90° (R), the guillotine cutting constraint is not required (F); 
- RG: Pieces can be rotated by 90° (R), the guillotine cutting constraint is required (G); 
- OF: Orientation of all pieces is fixed (O), the guillotine cutting constraint is not required (F);  
- OG: Orientation of all pieces is fixed (O), the guillotine cutting constraint is required (G).  

Of course, a solution that is feasible with regard to subtype OG is also feasible with regard to the 
other three subtypes. In the same way, a solution that is feasible with regard to subtype OF or with 
regard to subtype RG is also feasible with regard to subtype RF. 

In this paper, the cases of the (simple) limited and the unlimited stock of pieces are considered. At 
the same time, both the constraints (C1) and (C2) are to be taken into account where necessary. A 
genetic algorithm (GA) is suggested that can be applied to all four subtypes defined above of the 
(simple) constrained or the unconstrained 2D knapsack problem.  

The next section provides an overview of the literature on the 2D knapsack problem. Then the 
genetic algorithm will be described. After this the GA is subjected to a test using known benchmark 
instances, while at the end the paper is summarized.  

2 Previous work 

The 2D knapsack problem is NP hard (cf. Beasley 2004). For this reason, together with exact 
methods in recent years metaheuristic methods have increasingly been suggested to solve it. These 
include genetic algorithms (GA), Simulated Annealing Algorithms (SAA), Tabu Search Algorithms 
(TSA) and recently Greedy Randomized Adaptive Search Procedures (GRASP) as well. See Glover 
and Kochenberger (2003) for an introduction to the fundamental metaheuristic strategies. Exact 
methods for the 2D-KP are represented mainly by tree search (abbreviated TRS) or Branch and 
Bound methods (B&B); other exact methods are based on dynamic optimization (DO) or are model 
based methods. However, the approaches referred to above are also found in heuristics (without an 
optimality guarantee). 

Tables 1a and 1b present a selection of the published solution methods for the 2D-KP with 
rectangular pieces. Additional papers are considered, for example, in Beasley (2004) (subtypes *F, 
without guillotine cutting constraint) and in Alvarez-Valdes et al. (2002) (subtypes *G). Together 
with the source, the treated variant of the 2D-KP (stock of pieces variant and subtype, cf. above), as 
well as the method type (where applicable with reference to an exact method) are given for each 
method. For most of the methods the maximal size of calculated problem instances, given by the 
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number of piece types m, is shown. The reader is referred to the quoted sources for further 
information. Table 1a contains methods for subtypes *F and Table 1b contains methods for 
subtypes *G. There is no differentiation of the methods with regard to the objective function (area 
maximization vs. value maximization) and with regard to compliance with a maximal number of 
stages for the cuts (cf. Beasley 1985b). 
Tab. 1a. Methods for the two-dimensional knapsack problem with rectangular pieces, subtypes *F. 

No. Authors, source  Type of 
stock of 
pieces 

Sub-
type  

Method type Max. size 
m 

1 Beasley (1985a) C OF TRS, exact 10 

2 Hadjiconstantinou and Christofides (1995) C OF B&B, exact 15 

3 Arenales and Morabito (1995) UC OF B&B, And/Or graphs  5 

4 Fekete and Schepers (1997, 2004) C OF TRS, exact 40 

5 Lai and Chan (1997a, 1997b) C OF SAA, GA ≤ 35 

6 Leung et al. (2001, 2003) C OF SAA, GA, Hybrid  ≤ 30 

7 Wu et al. (2002) DC (Pi = Qi) RF Construction heuristic 97 

8 Caprara and Monaci (2004) C OF B&B, exact 50 

9 Beasley (2004) C, DC OF GA 1000 

10 Alvarez-Valdes et al. (2005, 2007) C, DC OF GRASP, TSA 1000 

11 Gonçalves and Resende (2006) C, DC OF GA 1000 

12 Hadjiconstantinou and Iori (2007) C OF GA 1000 

13 Fekete et al. (2007) C OF TRS, exact  50 

Several things can be seen in Tables 1a and 1b: a large majority of the papers is concerned with the 
probably more important variants of a constrained (C) or doubly-constrained (DC) stock of pieces. 
The treatment of rotatable pieces (subtypes R*) is rarely encountered; a fixed orientation of all 
pieces is nearly always pre-supposed. In spite of the progress that has been achieved, larger 
instances with a piece type number m ≥ 100 still cannot be solved exactly, so that heuristics, and in 
particular metaheuristic methods, are still absolutely essential for the 2D-KP. It is strange that for 
subtypes *G, in contrast to subtypes *F, it still does not appear that any large benchmark instances 
with approximately 1000 piece types exist and were calculated. It can be stated in general that in 
the literature on the 2D-KP there are two strictly separate directions for the 2D-KP without and 
with a guillotine cutting constraint. This means that the papers on one direction are obviously 
ignored by those on the other.  

As mentioned, the GA that is proposed here can be applied to all four subtypes of the 2D-KP with 
an (un)constrained stock of pieces and will also be tested for all these variants. This approach, 
which is "integral" with regard to the problem types, offers some advantages. First of all, the large 
instances (with up to m = 1000 piece types) suggested by Beasley (2004) for the 2D-KP without 
guillotine cutting constraints (*F) are readily available as well for the problem types with guillotine 
cutting constraints (*G). If benchmark instances that differ from one another solely with regard to 
the constraints (orientation, guillotine cutting constraint) are tested by means of exact methods, this 
results in reliable statements on the influence of these constraints on the primary optimization 
criterion, for example the full use of the area. These can in certain circumstances have practical 
significance as well, for example, in the design of containers. In a test of heuristic methods at least 
approximative statements on the influence of constraints can be acquired. 
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Tab. 1b. Methods for the two-dimensional knapsack problem with rectangular pieces, subtypes *G.  
No. Authors, source  Type of the 

stock of 
pieces 

Sub-
type  

Method type  Max. size 
m 

1 Christofides and Whitlock (1977) C OG DO, exact 20 

2 Wang (1983) C OG Construction heuristics  20 

3 Beasley (1985b) C OG DO, exact 50 

4 Vasco (1989) C OG Construction heuristics  30 

5 Oliveira and Ferreira (1990) C OG Construction heuristics  20 

6 Viswanathan and Bagchi (1993) C OG TRS, exact  

7 Christofides  and Hadjiconstantinou (1995) C OG B&B, exact 20 

8 Morabito and Arenales (1996) C OG TRS 20 

9 Hifi (1997) C OG TRS, exact 20 

10 Fayard et al. (1998)   UC, C OG Heuristic, DO 60 

11 Parada et al. (1995, 1998, 2000) C OG Heuristics (among 

others SAA, GA)  

 

12   Cung et al. (2000) C OG B&B, exact 35 

13 Alvarez-Valdes et al. (2002) UC, C OG TSA 60 

14 Silveira and Morabito (2002) C OG DO 60 

15 Cintra and Wakabayashi (2004) UC RG DO  50 

16 Morabito and Pureza (2007) C OG DO, And/Or graphs 60 

Systematic aspects must also be noted. It is only logical to take over the four subtypes introduced 
by Lodi et al. (1999) for the 2D Bin Packing Problem for the other types of 2D C&P problems (cf. 
Bortfeldt 2005). However, if the four subtypes are introduced, methods (or variants of methods) 
should also be developed that serve the subtypes with rotatable piece types as well. It is true that 
with an unlimited stock of pieces (case UC) the orientation constraint (C1) represents an 
insignificant constraint only, so that its omission does not require an adjustment of the method (cf. 
Beasley 1985b, S. 298). However, this is obviously no longer the case for the variants with a 
limited stock of pieces (C, DC). For example, in Beasley (2004) the case of rotatable pieces is in 
fact included as an option in the formulation of the model, but is not implemented as well in the 
suggested GA. Finally, it should be noted that from a logically systematic point of view the case 
without an orientation constraint (C1) is primary, while the case with an orientation constraint (C1) 
represents a derived and therefore secondary problem. For this reason, problem variants without the 
constraint (C1) should at least not be neglected.  

3 The genetic algorithm for the 2D knapsack problem 

The method suggested here is based on the GA from Bortfeldt and Gehring (2001) for the three-
dimensional knapsack problem (cf. Bortfeldt 2005 as well). The components and features of the GA 
that are already known will be described briefly.  

3.1 Layer structure of generated packing plans 
The genetic algorithm generates exclusively solutions or packing plans with a layer structure (see 
Fig. 1). A solution is generally broken down into several rectangular layers. The layer width is 
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always equal to the container width, while the length of a layer (also known as the layer thickness) 
is given by the length of a particular piece, namely of the so-called layer-defining piece (ldp), and 
its orientation. The layers in a solution follow on consecutively in the lengthways direction (x-
direction) of the container without gaps. Each placed piece lies completely in a single layer.  

layer 1 layer 2 container
length lC

x

y

container
width wC

layer
defining
piece ldp

0

layer thickness

 

Fig. 1.  Layer structure of a packing plan.  

3.2 Representation of solutions and fitness 
The GA does not use a special code for solutions. Instead, the genetic search takes place directly in 
the space of the completely defined packing plans (phenotypes) with layer structure. A solution is 
shown as a sequence of layers. The appropriate placements of pieces are recorded per layer. The 
placing of a piece is indicated by the piece type, its spatial orientation and the coordinates of a 
reference corner. The filling rate fr of a layer is calculated as the quotient of the value packed in the 
layer and the layer area; if maximization of the area is required, fr is calculated as the quotient of 
the total area of all packed pieces and the layer area. The fitness of a solution is given by the 
objective function value, i.e. the total value or the total area of all packed pieces. 

3.3 Algorithm of the genetic search and operators 
The overall procedure of the genetic search is shown in Fig. 2. The GA uses the reproduction model 
of the generational replacement without duplicates. The size of the population is kept constant and 
is given by the parameter npop. The solutions of the start generation are generated by a special 
greedy heuristic (see below). Solutions for the following ngen generations are either reproduced 
identically (elitist strategy) or generated from the solutions of the previous generation through three 
operators, namely crossover, standard mutation and merger mutation. Crossover and standard 
mutation are used concurrently and with constant complementary probabilities (pcrossover + pstd_mutation = 
1). Parent solutions for the operators are each determined by means of a ranking selection, but the 
second partner for a crossover is selected purely randomly. The concluding post-optimization of the 
best solution will be dealt with below. 

The transmission and re-generation of layers takes place in a specific way per operator. With the 
crossover, layers with the highest filling rate are taken over by parent solutions in order to combine 
good parts of both parents. With the standard mutation, the number and selection of layers that are 
taken over (to a certain extent) are determined randomly. With the merger mutation all layers 
except two are taken over always and instead of these two layers only one new layer is generated to 
reduce area losses at layer borders (running vertically in Fig. 1). 
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procedure cl_genetic_search(in: problem data, parameters, out: best solution sbest) 
generate npop solutions for the start generation (with generation counter g = 0); 
for g := 1 to ngen do 
 reproduce the best nrep solutions of generation g – 1 for generation g; 
 generate npop – nrep solutions for generation g through the operators 'crossover' and 'standard mutation';  
 carry out nmerge merger mutations and replace in each case the current worst solution ws in  

 generation g with the mutated solution os, if os is better than ws; 
endfor; 

      carry out post-optimization of the previously best solution;  
end. 

Fig. 2. Overall procedure of the genetic search. 

3.4 Completing solutions 
A rump solution created through the transmission of parent layers generally has to be supplemented 
by several new layers in order to obtain a complete, i.e. no longer extendable, packing plan. The 
objective of the competent greedy procedure is therefore to supplement a rump solution by several 
new layers in such a way that the fitness value grows as much as possible. 

A single layer is generated in two steps. In step 1 the layer is defined through the selection of a 
layer-defining piece and its orientation; the layer thickness d is given through the x-dimension of 
the ldp. A feasible layer definition is found if the ldp is still free (not packed) and if the sum of all 
layer thicknesses including d does not exceed the container length lC (cf. Fig. 1). In step 2 the 
defined layer is filled by the ldp and in general further free pieces with a heuristic to be introduced 
later.  

The greedy heuristic for the completion of a rump solution is designed as a tree search with a 
limited number of successors. First of all, (maximal) n1 first new layers are defined and filled for the 
incomplete solution sin that is passed on and sin is extended on a trial basis and alternatively by one 
of these layers. Finally, each of the resulting temporary solutions stmp,1 is supplemented to a 
complete solution stmp. This is done layer by layer: at maximum n2 new layers are defined and filled 
for the second, third, etc. new layer; of these, the layer with the maximum filling rate is taken over; 
the others are "forgotten". Finally, the best obtained complete solution stmp is returned.  

The numbers n1 and n2 of successor layers that are taken into account depend on the operator 
(crossover, mutation variant) that is carried out and result by means of the parameters qldp1 to qldp3 
(cf. Bortfeldt 2005). Note that only layers with relatively large layer-defining pieces are included in 
the competition.  

The greedy heuristic is also used to generate the start generation. Here, an empty rump solution sin is 
assumed and finally the npop best complete solutions stmp are returned.  

3.5 Filling a layer – first heuristic 
The first heuristic for filling a layer, known as fill_layer_g, fills a defined layer, in that successive 
residual spaces are defined and each is filled with one piece. The first residual space is the rectangle 
of the layer. This is filled with the selected ldp. If a residual space was filled, two daughter residual 
spaces are defined. These are collected in a stack and processed later. Residual spaces that cannot 
be filled are simply removed from the stack. The heuristic ends when the stack is empty. Fig. 3 
shows two possible variants of the definition of the two daughter residual spaces of a filled residual 
space.  
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Although each residual space is filled directly with one piece only, for each residual space the pair 
of free pieces with maximal area is determined that can be located in the residual space (contiguous 
in x or in y direction). One piece of this pair is then placed directly in the residual space. The other 
is reserved for one of the daughter residual spaces and placed in it, if the daughter residual space 
concerned is removed from the stack and processed. 

 

Fig. 3. Variants of the generation of daughter residual spaces for a filled residual space. 

The heuristic fill_layer_g depends on three parameters (known as layer parameters, cf. Bortfeldt 
2005). These control the selection of one of the two variants of the definition of daughter residual 
spaces (see Fig. 3), as well as the implementation of residual space mergers and the orientation of 
pieces in residual spaces.  

It appears that residual spaces are created exclusively through guillotine cutting and each placed 
piece lies fully in a residual space. Because packing plans also have a layer structure, they observe 
the guillotine cutting constraint (C2) (on sole application of the procedure fill_layer_g).  

3.6 Filling a layer – second heuristic 
The second heuristic for filling a layer, known as fill_layer_ng, stems from the algorithm "Touching 
Perimeter" from Lodi et al. (1999) and is explained as follows.  

A piece placed in the layer rectangle is referred to as positioned normally if it is arranged in a 
feasible manner, touches the container or the rear edge of another piece with its front edge and at 
the same time touches the left edge of the layer rectangle or the right edge of another piece with its 
left edge (cf. Fig. 4).  

 

Fig. 4. Layer rectangle with placed pieces. 

A point p of the layer rectangle is referred to as a placing point if at least one free piece r with a 
feasible orientation o exists in such a way that r is positioned normally if r lies in the orientation o 
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with its front left-hand corner in p. A placing point is noted with its relative coordinates with regard 
to the front left-hand corner of the layer rectangle. If the layer is still empty, p0 = (0,0) is the only 
placing point. 

A defined layer is filled through the successive placing of individual pieces. At the beginning, the 
layer-defining piece r0 is placed in the selected orientation o0 with its front left-hand corner in the 
placing point p0. For each placement a further free piece is arranged in a placing point in such a way 
that it is positioned normally. A placement is noted as a triple (p, r, o) from a placing point, the 
placed piece r and its orientation o. 

The heuristic performs a depth search with a limited and variable number of successors (cf. Fig. 5).  

Procedure fill_layer_ng (in:ldp r0, orientation o0, layer thickness d, set of free pieces R0,  
                  container width wC, search depth sdepth, search width swidth, 
         out: best state Sbest) // contains best layer plan  

// initializing 
initial state S0 := (0, 0, R0, {p0}, ∅); // p0 = (0,0)  
state set Sset := {S0}; 
best state Sbest.vp = 0; // packed value is zero 

// continuation of solutions 
while Sset  ≠ ∅ do 
 select state S ∈ Sset with maximum number of packed pieces, set Sset := Sset \ {S};  
 // state is initial state 

if  S = S0 then  
  generate successor state S1 for placement (r0, o0, p0); 

  Sset := Sset υ {S1 };  
// state contains complete packing plan for layer  
else if  state S cannot be extended by a placement then  

  if  S.vp > Sbest.vp then Sbest := S; endif;  // update best solution  
// state does not yet contain a complete solution  
else  // fix number of successor placements 

   if S.np ≤ sdepth then  nsucc := swidth else nsucc := 1; endif; 
   determine (maximal) nsucc permitted placements (r, o, p)i , i = 1,...,nsucc , 
    with highest tp values;  
   for i := 1 to nsucc do  
    generate successor state Si from state S in accordance with placement (r, o, p)i;  

    Sset := Sset υ {Si };  
   endfor;  

 endif; 
endwhile; 
end. 

Fig. 5. Heuristic fill_layer_ng. 

As long as the search depth, given by the number np of pieces already placed does not exceed the 
parameter value sdepth, maximal swidth successor placements are defined and realized alternatively 
(number of successors nsucc = swidth). If np > sdepth, a part solution (for the given layer) is only 
extended by (maximal) one further placement (nsucc = 1). As successors, all placements (p, r, o) 
are permitted that lead to a normal positioning of the piece p. The nsucc placements with the 
highest tp value (tp as touching perimeter) are selected. The tp value of a placement is given by the 
part length of the perimeter of the piece r for which r borders directly on the layer rectangle or on 
pieces already placed (cf. Fig. 4). The selection of successor placements with high tp values serves 
to avoid area losses. The heuristic finally returns the complete packing plan (for the layer) with the 
maximal value (this is the packed area, where applicable).  
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The depth search takes place in a state space. A search state is given through a 5-tupel  
S = (np, vp, R, P, Pl) with the following components: number of packed pieces np, packed value vp, 
set of still free pieces R, set of placing points P and set of placements carried out Pl. If a placement 
(r,o,p) is carried out in a search state S, the result is a successor state S’, which is obtained through 
an updating of the components of S. In particular, placing point p from S.Pl is to be replaced by new 
placing points situated on the rear and right edge of the placed piece (or on the extensions of these 
edges, cf. Fig. 4). The heuristic fill_layer_ng generally generates (part) packing plans that do not 
satisfy the guillotine cutting constraint (C2).  

3.7 Heuristic for post-optimization 
At the end of the genetic search the best solution so far is subsequently optimized by means of the 
heuristic postopt_sol (cf. Fig. 2). Similar to the merger mutation, the aim is to reduce area losses at 
layer borders. The idea of the heuristic postopt_sol is to replace a subset of layers by a single layer 
with a higher packed value. Fig. 6 shows a summary of the heuristic postopt_sol. 

procedure postopt_sol (in: complete packing plan s, problem data, parameter maxpol,  
          out: improved_flag, complete  packing plan simpr)  

// initializing 
improved_flag := 0; // no improved solution found  
simpr := s; // improved solution is previous best solution  
L := set of layers of s;  
nlfix := max(0, |L| - maxpol); // number of fixed layers  
Lfix := set of the nlfix layers of s with maximal filling rate; 
Rres := set of all pieces that were not packed in s; 
 
// determining an improved solution  
for each subset Lsel ⊂ L \ Lfix with minimal 2 and maximal maxpol layers  do 
 R := set of all pieces from Lsel υ Rres;  

d := lC – sum of the thicknesses of all layers from Lsel;  
for each piece type rtype found in R do 
for both orientations o of rtype do   
 if  orientation o not feasible then continue; endif;  

   fill the layer lnew defined through rtype, o, d with pieces from R; 
 if  value(L \ Lsel) +  value(lnew) > value(simpr) then   

    simpr := L \ Lsel  υ {lnew}; // new best solution 
    improved_flag := 1; // ... found 
   endif; 

 endfor; 
 endfor; 
endfor; 
end. 

Fig. 6. Heuristic postopt_sol. 

In detail, postopt_sol proceeds as follows. First of all, a subset Lfix of set L of the layers of the 
previous best solution s is defined. If the parameter maxpol is less than the number |L| of the layers 
of s, Lfix receives the |L| - maxpol layers of s with the greatest filling rates; otherwise Lfix is empty. 
Where applicable, the layers of Lfix belong to the improved solution.  

Of the remaining layers with less capacity utilization, all subsets Lsel are formed from 2, 3, etc., up 
to maximal maxpol layers. For each new subset Lsel a single new layer lnew is generated 
experimentally in different variants using one of the heuristics presented above (fill_layer_*). 

The variant formation refers to the layer-defining piece and its orientation (if an orientation 
constraint (C1) is not required). The thickness of the new layer is given as the difference from the 
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container length lC and the sum of the thicknesses of all layers in set L \ Lsel. For the selection set 
Lsel  all pieces are available for the new layer lnew to be generated that were placed in Lsel, as well as 
all pieces of the original rectangle set not located in the previous best solution s. 

If a higher value was packed in (a variant of) the only new layer lnew than in the layer set Lsel, the 
layers in set L \ Lsel form a new best solution jointly with layer lnew. At the end, the best of these new 
solutions (with maximum value) is returned.  

3.8 Variants of the genetic algorithm 
The aim is to be able to calculate a total 16 variants of the 2D-KP with the GA. These result from 
combination of: the two types of the stock of pieces (C) and (UC); the four problem subtypes OG, 
OF, RG and RF; and the two optimization criteria area maximization (U, standing for 
“unweighted”) and value maximization (W, standing for “weighted”). The 16 problem variants 
correspond to 16 GA variants, which are designated in accordance with the addressed problem 
variants, e.g. C-OF-U, and explained afterwards. 

a) Heuristic for filling a layer 
The corresponding GA variants (*_*G_*) use the heuristic fill_layer_g for all problem variants 
with a guillotine cutting constraint. For all other problem variants the corresponding GA variants 
(*_*F_*) use the heuristic fill_layer_ng.  

b) Diversification 
If a diversification approach (DA) is used in a GA variant, the genetic search, including the 
subsequent optimization (cf. Fig. 2) is repeated several times under varied conditions. The best 
solution obtained over all these runs is output at the end. If a GA variant uses several diversification 
approaches simultaneously, a GA run in accordance with Fig. 2 is carried out for each possible 
combination of variants of the different DAs. In the following, the diversification approaches used 
are introduced and assigned to the GA variants.  

DA 1: Variation of the position of the layers in the container 
The DA comprises two variants. In variant 1 (as described above) layers are generated that follow 
each other along the container length lC (cf. Fig. 1). In variant 2, the layers follow each other along 
the container width wC. This diversification is applied with all GA variants (but not for lC = wC).  

DA 2: Variation of the learning mechanism for the layer parameters 
The DA is only used jointly with the heuristic fill_layer_g, i.e. in GA variants for the 2D-KP with a 
guillotine cutting constraint (*_*G_*). This approach, including its parameterizing, is taken over 
without change from Bortfeldt (2005). In essence, what is involved here is the variation of the 
initial probability distributions for learning the layer parameters.  

DA 3: Variation of the stock of pieces  
The DA is used only in GA variants that observe the guillotine cutting constraint and maximize the 
packed value (*_*G_W). The diversification comprises three variants: the complete stock of pieces 
is used in variant 1. In variants 2 and 3 the stock of pieces is reduced in such a way that only about 
250% or 200% of the container area is covered. Only the piece types with the largest value/area 
quotients are retained here. Naturally, the DA is only used for those instances in which a reduction 
actually takes place in variants 2 and 3.  

DA 4: Variation of the selection of the piece pair for a residual space  
In the same way as DA 3, this DA is conceived for the GA variants *_*G_W and comprises two 
variants. With the basis variant, the matching pair of pieces with the maximum area is selected to 
fill a residual space. With the second variant the matching pair of pieces with the maximum value is 
selected per residual space.  
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c) Parameterizing 
The parameterizing of the GA variants can be summarized as follows:  
- The parameters of the genetic search, namely npop, pcrossover,  pstd_mutation, nrep, nmerge, and the 

parameters qldpi (i = 1,2,3) for completing solutions, are chosen as in Bortfeldt (2005). 
- The parameterizing of diversification approaches has already been dealt with.  
- For the GA variants *_*G_U (for the guillotine cutting constraint, area maximizing) ngen = 1000 

generations are generated per GA run. To limit the search effort and, e.g., because of the large-
scale diversification ngen = 20 is chosen for all other GA variants.  

- For the heuristic fill_layer_ng the parameter values sdepth = 5 and swidth = 5 are stipulated. For 
the post-optimization the parameter maxpol is set to 5. 

- A time limit per GA run is set as follows: maxtime = 600 seconds (on a 3 GHz PC, see below) for 
the GA variants *_*G_* (for the guillotine cutting constraint), maxtime = 3600 seconds 
otherwise.  

Altogether there is a standard parameter set available for each GA variant, and the parameter sets of 
the GA variants largely coincide. 
d) Orientation constraint 
If an orientation constraint (C1) is required non-permitted orientations are excluded from the start 
for layer-defining pieces and for other pieces placed in a layer. Each GA variant "without 
orientation constraint“ (*_R*_*) coincides with the corresponding GA variant "with orientation 
constraint“ (*_O*_*), but both possible orientations are permitted per piece type.  

e) Unlimited stock of pieces  
Each GA variant for an unlimited stock of pieces (UC_*_*) coincides with the corresponding GA 
variant for a limited stock of pieces (C_*_*). With one GA variant of the first group, it is only 
ensured that the copies per piece type cover the container area to at least 100%. 

A single GA run (cf. b) Diversification) ends after all ngen generations (after the start generation) 
are generated or the time limit maxtime was exceeded. A GA run and the complete procedure break 
off prematurely after an optimal solution is identified. An optimal solution is recognized by all 
pieces being packed or the packed value (or the packed area) reaching the upper bound Ub used 
here. For a detailed definition of Ub see, for example, Gonçalves and Resende (2006). In brief, the 
upper bound Ub is acquired through a relaxation of the 2D-KP to a constrained 1D knapsack 
problem. For a concrete 2D-KP instance the value Ub results as an objective function value of the 
appropriate relaxed 1D-KP instance.  

4 Testing the method 

The genetic algorithm, referred to below as CLGAL (CL stands for "container loading", L for 
"layer"), was implemented in C by means of the .NET 2003 environment and tested with an Intel 
PC (3GHz, Dual Core, 2GB RAM). If the type of the stock of pieces and the target criterion are 
ascertained, the appropriate GA variants are designated below with the problem subtype, for 
example CLGAL-OG.  

4.1 Problem instances and comparison methods for the test 
Five sets of benchmark instances for the constrained (C) 2D-KP from the literature were included 
for the test. The instances of the first four sets were used up to now only as instances of the subtype 
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OF and the instances of the fifth set only considered as instances of the subtype OG. A sixth set of 
instances is used for testing the GA for the unconstrained (UC) 2D-KP.  

a) Set1 
Set1 consists of 21 smaller instances. In each case, the packed value (in contrast to the area) is to be 
maximized and an optimal solution is known for each instance (cf. Beasley 2004). The 21 instances 
include: 12 from Beasley (1985a), 2 from Hadjiconstantinou and Christofides (1995), 1 from Wang 
(1983), 1 from Christofides and Whitlock (1977) and 5 from Fekete and Schepers (1997). Where 
applicable, the designations of instances are taken from the literature (cf. Annex, Table 4).  

b) Set2 
Set2 comprises 630 larger instances, which were introduced by Beasley (2004) on the basis of 
Fekete and Schepers (1997). These are also instances of value maximizing. All instances have a 
container with the dimensions (100, 100). The piece types of each instance are broken down into 
four classes; each class is determined by two intervals from which the dimensions of a piece type 
are selected at random. There are three problem types (I, II and III) and each problem type is 
defined by a specific percentage distribution of the piece types over the four classes. Table 2 
stipulates the classes and problem types. For each piece type the value is selected as the product of 
the area and a random number from the set {1,2,3}.  

For each problem type the number of piece types is varied as follows: m = 40, 50, 100, 150, 250, 
500 and 1000. Pi = 0 and Qi = Q, equally for piece types i = 1,...,m of an instance, where Q is in the 
set {1,3,4}. Finally, 10 instances are generated randomly for each problem type and each 
combination (m,Q); this gives 7 × 3 × 10 = 210 instances per problem type. The maximal number of 
rectangles per instance is apparently M = m × Q.  

c) Set3 
Set3 contains 10 instances. The packed area is to be maximized per instance. The instances (with 
the exception of LC2) were generated in such a way that a loss-free optimal solution exists with an 
area capacity utilization of 100%. The 10 instances include: 3 from Lai and Chan (1997a) (LC1 – 
LC3), 5 from Jakobs (1996) (J1 – J5) and 2 from Leung et al. (2003) (LYT1, LYT2). 
Tab. 2. Classes of piece types and problem types in the 630 larger instances from Beasley (2004).  

Class Description Length Width 
1 short and broad [1,50] [75,100] 

2 long and narrow [75,100] [1,50] 

3 big [50,100] [50,100] 

4 small [1,50] [1,50] 
 

 Class 
Type 1 2 3 4 

I 20% 20% 20% 40% 

II 15% 15% 15% 55% 

III 10% 10% 10% 70% 

d) Set4 
Set4 contains the 21 instances from Hopper and Turton (2000). As with Set3, these are instances of 
area maximizing with loss-free optimal solutions (so-called jigsaw instances). However, the 
instances are generally larger.  
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e) Set5 
Set5 includes 22 instances from Fayard et al. (1998). In instances CU1 to CU11 the packed area is 
to be maximized, in instances CW1 to CW11 the packed value. An optimal solution is known for all 
instances. The numbers of the piece types vary between m = 25 and m = 60; some of the instances 
belong to the previously largest calculated instances of problem variant OG.  

f) Set6 
Set6 also includes 22 instances from Fayard et al. (1998) for the unconstrained (UC) 2D-KP. With 
instances UU1 to UU11 the packed area is to be maximized, in instances UW1 to UW11 the packed 
value. An optimal solution is known for all instances. The numbers of the piece types vary again 
between m = 25 and m = 60.  

The following comparison methods were included altogether for the first four instances sets: 
Beasley (2004) (in brief: B04), Alvarez-Valdes et al. (2005) (APT05), Gonçalves and Resende 
(2006) (GR06), Hadjiconstantinou and Iori (2007) (HI07), and Alvarez-Valdes et al. (2007) 
(APT07). For the fifth instances set the following methods are used for a comparison: Fayard et al. 
(1998) (FHZ98), Alvarez-Valdes et al. (2002) (APT02) and Morabito and Pureza (2007) (MP07). 
For instances set Set6 the GA is only compared to the method from Fayard et al. (1998) (FHZ98).  

It is evident that the binding of sets 1 to 4 to the subtype OF or of set 5 to the subtype OG that was 
referred to earlier is not compulsory. Consequently, to test the GA the instance groups Set1, Set2, 
Set3 and Set4 were used for all four subtypes and Set5 for the subtypes OG and RG. Set6 is only 
used for the subtype OG.  

4.2 Numerical results  
Table 3 gives an overview of the numerical results of the test and is explained as follows:  

- Only best values are taken into account for the CLGAL variants and all comparison methods. The 
best value is determined per CLGAL variant and instance from maximal 10 calculations with 
different seed values (between 1 and 10) for the random number generation. Depending on the 
target criterion, the best value is the maximal packed value or the maximal packed area. 

- The percentage deviation from the optimum, calculated as DevOpt = (Optimum – best value)/ 
Optimum×100 (%), is determined for the sets with known optimal values for each method and 
instance. For Set2, the percentage deviation DevUb from the upper bound Ub, defined 
analogously to DevOpt, is calculated instead. The mean value from DevOp or from DevUb over 
all instances is shown per instances set and method. With Set2, DevUb is averaged over the 
instances with at least 250 piece types (DevUb-250), too. 

- In addition, the number of achieved optimal solutions (#Opt) is given for each set and method. 
For Set2 and the comparison methods these numbers are not available while for Set2 and for the 
CLGAL variants #Opt is determined by comparison of the best values with the Ub values. 

- With Set1 and Set5 the optima depend on the problem subtype and the known optima refer in Set1 
to the subtype OF and in Set5 to the subtype OG. The GA variants CLGAL-RG and CLGAL-RF 
overbid the optima of the subtypes OF and OG respectively, leading to negative DevOpt values. 
Because of the dependency of the optima on the problem subtype it is not practical with Set1 and 
Set5 to indicate #Opt values for CLGAL-RG and CLGAL-RF. In contrast, Set3 and Set4 are 
jigsaw instances and the optima are not dependent on the problem subtype. For this reason, for 
these sets the achieved optima are counted for all four relevant CLGAL variants.  

- For Set4, the number of achieved best values (#Best) is given for each method. However, to 
ensure a fair comparison only the GA variants CLGAL-OG and CLGAL-OF are permitted to 
compete. The new best values only achieved by these CLGAL variants are shown in brackets.  
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- Only the average run times (AvgTime) in seconds per CLGAL variant and instances set are given 
while run times for the comparison methods are not presented since very different computers were 
used to test them.  

More detailed results are found in Tables 4 to 12 in the Annex. In these tables as well only the best 
values are taken into account for all compared methods and for the instances of a set. 
Tab. 3. Overview of numerical results. 

Set1 (C) CLGAL Comparison methods (OF throughout) 
  OG OF RG RF B04 APT05 HI07 GR06 APT07
DevOpt (%) 1.28 0.02 -3.42 -4.53 1.24 0.19 0.00 0.00 0.00
#Opt 12 19  13 17 21 21 21
AvgTime (s) 1.3 3.4 1.5 9.5   
Set2 (C) CLGAL Comparison methods (OF throughout) 
  OG OF RG RF B04 APT05 HI07 GR06 APT07
DevUb (%) 1.26 0.99 0.66 0.51 1.67 1.07 1.32 0.98 0.98
DevUb-250  (%) 0.10 0.04 0.03 0.01 0.30 0.07 0.28 0.07 0.05
#Opt 194 254 273 320   
AvgTime (s) 3.5 328.5 15.9 295.8   
Set3 (C) CLGAL Comparison methods (OF throughout) 
  OG OF RG RF   APT05   GR06 APT07
DevOpt (%) 2.12 0.56 0.85 0.69  1.95  0.38 0.21
#Opt 3 6 5 6  3  8 8
AvgTime (s) 25.6 73.1 17.1 71.0      
Set4 (C) CLGAL Comparison methods (OF throughout) 
  OG OF RG RF   APT05     APT07
DevOpt (%) 1.09 0.40 0.08 0.02 1.50   0.47
#Opt 5 6 13 17 3   9
#Best 7 (new:2) 15 (new:9)  3   10
AvgTime (s) 284.0 1640.6 193.1 952.5   
Set5 (C) CLGAL Comparison methods (OG throughout) 
  OG   RG   FHZ98 APT02 MP07     
DevOpt (%) 1.07   -1.73   1.74 0.07 0.00    
#Opt 10     5 15 22   
AvgTime (s) 8.7   8.5             
Set6 (UC) CLGAL Comparison methods (OG)   
  OG       FHZ98         
DevOpt (%) 1.92      0.09        
#Opt 7     17     
AvgTime (s) 10.4                 

The analysis of the results gives rise to a differentiated picture. The GA variant CLGAL-OF is 
considered first. For the instance groups Set1 and Set3 CLGAL-OF is placed in the middle of the 
compared methods. This applies with regard to the mean deviation from the optimum as well as to 
the number of calculated optimal solutions.  

CLGAL-OF performs better for the instance group Set2. It is true that CLGAL-OF is close behind 
the methods GR06 and APT07 with regard to the mean upper bound deviation over all Set2 
instances; however if the comparison is limited to large instances with at least 250 piece types (see 
DevUb-250), CLGAL-OF takes the first position. Optimal solutions are achieved for 40% of Set2 
instances.  

For the Hopper and Turton instances (Set4) CLGAL-OF achieves the best result with regard to the 
optimum deviation and to the number of best values. It should be noted that only methods for the 
subtypes OF and OG are compared. The APT07 method proves to be superior only with regard to 
the number of optimal solutions and achieves these exclusively for smaller Set4 instances. Vice 
versa, CLGAL-OF calculates nine new best values for larger Hopper and Turton instances. 
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On the whole, CLGAL-OF achieves only moderate results for smaller instances, but equals or 
exceeds the solution quality of the current best heuristics for large instances. This behavior seems 
plausible: the enforced layer structure restricts the solution space all the more, the lower the number 
of available rectangle types. If a large number of rectangle types is available, even with a preset 
layer structure the area of every single layer can be filled with little or even no loss (a 
corresponding statement applies for instances of value maximization).  

However, the relatively high solution quality of CLGAL-OF for large instances is only achieved 
with a comparatively large amount of computing effort. This is caused by the tree search for 
generating high-quality layers integrated in the GA.  

The GA variant CLGAL-OG performs much worse than the variant CLGAL-OF for the instance 
groups Set1 to Set4. This is no surprise, because the additional guillotine cutting constraint (C2) 
restricts the search space still further. It is also plausible that the reduction of the solution quality is 
greater for smaller instances (with smaller numbers of piece types m): with greater m values the 
additional constraint (C2) can be compensated in part through the abundance of piece types, and 
therefore of packing variants. For large Set2 instances with m ≥ 250 the variant CLGAL-OG 
achieves even better results than the OF comparison methods B04 and HI07. CLGAL-OG also 
calculates an optimal solution for almost one in three Set2 instances. The run time requirement of 
CLGAL-OG is much less than that of CLGAL-OF.  

In comparison with other methods for the subtype OG with a constrained stock of pieces, CLGAL-
OG is again in the mid-table (Set5), while with an unlimited stock of pieces the GA performs much 
more weakly than the comparison method FHZ98 (Set6).  

A particular aim of the test is to check empirically how great the effect of the constraints (C1) and 
(C2) is on the solution quality. For just this purpose, instance groups are calculated at the same time 
with GA variants for different problem subtypes. If the guillotine cutting constraint (C2) is ignored, 
increases in the solution quality – measured by the quantities DevOpt and DevUb, respectively – of 
between approximately 0.1 and 1.4 percentage points are recorded. If a high quality was already 
achieved with the required constraint (C2), the increase on the dropping of (C2) tends to be less (cf. 
the results for Set3 and Set4). Surprisingly high increases in quality in the range of several 
percentage points result on a waiving of the orientation constraint (C1), as the results for Set1, Set2 
and Set5 show. However, the increases are very different here as well (cf. Set3). With the instances 
from Hopper and Turton (2000) it can be seen really well how a phased waiving of constraints can 
lead to almost complete optimality (cf. Set4). Finally, it should be stressed again that the influence 
of constraints on the primary optimization target of container capacity utilization can only be 
grasped approximately if this question is investigated by means of heuristics. 

5 Summary 

This paper considers the 2D-KP with optional orientation and guillotine cutting constraints. The 
number of pieces can be constrained (C) or unconstrained (UC). According to the system 
introduced by Lodi et al. (1999) four problem subtypes (OG, OF, RG, RF) result for the 2D-KP as 
well. Their combined treatment characterizes the paper at hand. The GA presented here operates 
each combination of the four problem subtypes and the two types of numbers of pieces and is also 
designed for the two target criteria value and area maximization. The problem subtypes without an 
orientation constraint (RG, RF) are therefore no longer neglected. For the first time (as far as we are 
aware) a method for the subtype OG is tested by means of large instances with up to 1000 piece 
types. The influence of the constraints considered on the primary optimization target is tested 
empirically. In the comparison of the methods the GA is generally found in the mid-table of the 
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heuristics proposed in recent years. This is caused basically by the additional layer structure of 
generated packing plans. However, for large instances of the constrained 2D-KP without guillotine 
cutting constraint (subtype OF) the GA achieves the solution quality of the best known heuristics 
and achieves new best values for one third of the difficult instances from Hopper and Turton.  
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Annex: Detailed results of the numerical test  

Table 4.   Results for Set1 (C). 

Instance Container m M Optimum B04 APT05 HI07 GR06 APT07 CLGAL 
  (L,W)     (OF) OF OF OF OF OF OG RG OF RF 

ngcut1 (10,10) 5 10 164 164 164 164 164 164 156 193 164 193 
ngcut2 (10,10) 7 17 230 230 230 230 230 230 230 250 230 250 
ngcut3 (10,10) 10 21 247 247 247 247 247 247 246 259 247 259 
ngcut4 (15,10) 5 7 268 268 268 268 268 268 268 268 268 268 
ngcut5 (15,10) 7 14 358 358 358 358 358 358 358 370 358 370 
ngcut6 (15,10) 10 15 289 289 289 289 289 289 289 296 289 300 
ngcut7 (20,20) 5 8 430 430 430 430 430 430 430 430 430 430 
ngcut8 (20,20) 7 13 834 834 834 834 834 834 834 886 834 886 
ngcut9 (20,20) 10 18 924 924 924 924 924 924 863 863 924 924 

ngcut10 (30,30) 5 13 1452 1452 1452 1452 1452 1452 1452 1452 1452 1452 
ngcut11 (30,30) 7 15 1688 1688 1688 1688 1688 1688 1604 1786 1688 1786 
ngcut12 (30,30) 10 22 1865 1801 1865 1865 1865 1865 1865 1875 1865 1932 
hccut03 (30,30) 7 7 1178 1178 1178 1178 1178 1178 1178 1272 1178 1272 
hccut08 (30,30) 15 15 1270 1270 1270 1270 1270 1270 1270 1418 1270 1431 
wang20 (70,40) 19 42 2726 2721 2726 2726 2726 2726 2721 2754 2721 2771 
cgcut03 (40,70) 20 62 1860 1720 1860 1860 1860 1860 1860 1900 1860 1920 

okp1 (100,100) 15 50 27718 27486 27589 27718 27718 27718 27589 27943 27661 28423
okp2 (100,100) 30 30 22502 21976 21976 22502 22502 22502 21976 23513 22502 24263
okp3 (100,100) 30 30 24019 23743 23743 24019 24019 24019 23740 24612 24019 25216
okp4 (100,100) 33 61 32893 31269 32893 32893 32893 32893 32893 32893 32893 32893
okp5 (100,100) 29 97 27923 26332 27923 27923 27923 27923 26304 27451 27923 27983

DevOpt (%)         1.24 0.19 0.00 0.00 0.00 1.28 -3.42 0.02 -4.53
#Opt         13 17 21 21 21 12   19   

Explanation: 

− The (best) packed (piece) value is shown per method and instance. 

− Optimal values with regard to problem variant OF are shown in bold face.   

− For a definition of the variables DevOpt and #Opt see main part. 

− Columns CLGAL-RG and CLGAL-RF contain negative DevOpt values because of the reference to the optima for 
the problem variant OF.  

− Optima cannot be indicated in these columns, because they are not known for the problem variants RG and RF 
respectively. 
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Table 5.   Results for Set2 (C). 

m Q M B04 APT05 HI07 GR06 APT07 CLGAL 
      OF OF OF OF OF OG RG OF RF 

40 1 40 7.62 6.97 6.12 5.99 6.55 6.74 4.25 6.49 3.53 
 3 120 3.54 2.22 2.82 1.96 1.95 2.77 1.41 2.17 1.10 
 4 160 3.24 1.81 2.40 1.85 1.65 2.48 1.14 1.73 0.91 

50 1 50 5.48 4.80 4.56 4.32 4.85 5.10 2.74 4.63 2.40 
 3 150 2.35 1.50 1.89 1.35 1.27 1.86 1.03 1.42 0.73 
 4 200 2.63 1.18 1.86 1.19 0.96 1.84 0.99 1.17 0.68 

100 1 100 2.26 1.51 1.69 1.27 1.50 1.76 0.85 1.43 0.72 
 3 300 1.27 0.47 0.99 0.53 0.31 0.70 0.26 0.43 0.16 
 4 400 1.06 0.26 0.86 0.34 0.18 0.41 0.11 0.20 0.07 

150 1 150 1.31 0.89 1.06 0.72 0.84 1.30 0.62 0.68 0.24 
 3 450 0.60 0.14 0.33 0.13 0.07 0.38 0.11 0.11 0.03 
 4 600 0.92 0.11 0.60 0.20 0.05 0.28 0.14 0.09 0.03 

250 1 250 0.88 0.51 0.75 0.33 0.45 0.64 0.22 0.29 0.05 
 3 750 0.57 0.04 0.51 0.11 0.01 0.12 0.02 0.01 0.00 
 4 1000 0.39 0.03 0.28 0.05 0.00 0.07 0.01 0.01 0.00 

500 1 500 0.26 0.07 0.21 0.06 0.03 0.10 0.02 0.01 0.00 
 3 1500 0.18 0.00 0.19 0.04 0.00 0.01 0.00 0.00 0.00 
 4 2000 0.18 0.00 0.19 0.03 0.00 0.01 0.00 0.00 0.00 

1000 1 1000 0.09 0.00 0.15 0.01 0.00 0.00 0.00 0.00 0.00 
 3 3000 0.07 0.00 0.12 0.01 0.00 0.00 0.00 0.00 0.00 
 4 4000 0.07 0.00 0.17 0.01 0.00 0.00 0.00 0.00 0.00 

DevUb-I (%)     1.64 1.04 1.24 0.98 0.95 1.23 0.63 0.99 0.54 
DevUb-II (%)   1.70 1.14 1.37 1.04 1.06 1.36 0.70 1.08 0.55 
DevUb-III (%)   1.66 1.03 1.35 0.92 0.94 1.21 0.66 0.92 0.43 
DevUb-All (%)   1.67 1.07 1.32 0.98 0.98 1.26 0.66 0.99 0.51 
DevUb-250 (%)   0.30 0.07 0.28 0.07 0.05 0.10 0.03 0.04 0.01 
#Opt-All               194 273 254 320 

Explanation: 

− The mean percentage deviation (DevUb) from the upper bound is shown for each method and instance group 
(m,Q). The instance group (m,Q) covers the 30 (m,Q) instances of all three problem types.  

− The best mean values are shown in bold face. 

− For a definition of the variables in the lower part of the table see main part. 

− There are no numbers of the optima for the comparison methods.  
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Table 6.   Results for Set2, problem type I (C). 

m Q M B04 APT05 HI07 GR06 CLGAL 
      OF OF OF OF OG RG OF RF 

40 1 40 6.39 6.02 5.35 5.30 5.77 3.42 5.43 3.40 
 3 120 4.71 2.79 3.36 2.71 3.56 1.76 3.03 1.40 
 4 160 2.98 1.96 2.20 1.69 2.38 1.32 1.75 1.12 

50 1 50 5.19 4.42 4.27 4.22 4.97 2.58 4.37 2.30 
 3 150 2.54 1.69 2.20 1.50 1.98 1.13 1.51 0.76 
 4 200 2.68 1.13 1.34 0.95 1.86 0.82 1.16 0.66 

100 1 100 1.98 1.47 1.60 1.32 1.69 0.94 1.53 0.95 
 3 300 1.21 0.51 0.97 0.62 0.60 0.21 0.46 0.17 
 4 400 1.13 0.28 1.00 0.36 0.43 0.10 0.23 0.09 

150 1 150 1.06 0.68 0.86 0.64 0.89 0.53 0.63 0.35 
 3 450 0.61 0.10 0.32 0.15 0.34 0.10 0.13 0.05 
 4 600 1.11 0.15 0.60 0.27 0.43 0.10 0.18 0.06 

250 1 250 0.83 0.51 0.74 0.33 0.58 0.13 0.31 0.06 
 3 750 0.69 0.06 0.46 0.19 0.17 0.02 0.02 0.00 
 4 1000 0.44 0.05 0.14 0.07 0.08 0.01 0.04 0.01 

500 1 500 0.22 0.09 0.17 0.10 0.07 0.01 0.03 0.01 
 3 1500 0.23 0.00 0.18 0.05 0.01 0.00 0.00 0.00 
 4 2000 0.18 0.00 0.15 0.05 0.00 0.00 0.00 0.00 

1000 1 1000 0.09 0.01 0.07 0.01 0.00 0.00 0.00 0.00 
 3 3000 0.06 0.00 0.05 0.01 0.00 0.00 0.00 0.00 
 4 4000 0.04 0.00 0.14 0.02 0.00 0.00 0.00 0.00 

#Opt             63 91 74 101 
DevUb (%)   1.64 1.04 1.24 0.98 1.23 0.63 0.99 0.54 

Explanation: 

− The mean percentage deviation (DevUb) from the upper bound is shown for each method and instance group 
(m,Q). The instance group (m,Q) covers the 10 (m,Q) instances of problem type I. 

− For a definition of the variables DevUb and #Opt see main part.  

− There are no detailed results for the individual problem types for the method APT07.  
In addition, the number of optimal solutions achieved by the comparison methods is not known. 
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Table 7.   Results for Set2, problem type II (C).  

m Q M B04 APT05 HI07 GR06 CLGAL 
      OF OF OF OF OG RG OF RF 

40 1 40 8.68 8.17 6.91 6.78 8.19 4.64 7.39 3.76 
 3 120 3.07 2.37 2.93 2.06 2.94 1.41 2.28 1.23 
 4 160 3.07 2.09 2.77 2.12 2.50 1.26 2.04 0.96 

50 1 50 5.97 4.95 4.85 4.40 5.39 3.09 4.89 2.79 
 3 150 2.12 1.32 1.66 1.29 1.73 0.99 1.43 0.70 
 4 200 2.78 1.24 2.11 1.34 2.09 1.23 1.31 0.92 

100 1 100 2.39 1.48 1.56 1.28 1.78 0.75 1.51 0.69 
 3 300 1.28 0.42 0.87 0.48 0.82 0.30 0.46 0.16 
 4 400 1.25 0.35 0.91 0.50 0.64 0.17 0.28 0.07 

150 1 150 1.25 0.74 0.86 0.55 1.18 0.39 0.53 0.15 
 3 450 0.52 0.15 0.34 0.09 0.35 0.10 0.09 0.04 
 4 600 0.85 0.07 0.57 0.20 0.13 0.12 0.03 0.03 

250 1 250 0.95 0.51 0.76 0.37 0.51 0.18 0.32 0.05 
 3 750 0.44 0.04 0.31 0.09 0.10 0.02 0.01 0.00 
 4 1000 0.29 0.03 0.38 0.06 0.08 0.01 0.00 0.00 

500 1 500 0.28 0.05 0.25 0.07 0.06 0.01 0.00 0.00 
 3 1500 0.12 0.00 0.11 0.05 0.01 0.01 0.00 0.00 
 4 2000 0.14 0.00 0.17 0.03 0.02 0.00 0.00 0.00 

1000 1 1000 0.09 0.01 0.21 0.01 0.00 0.00 0.00 0.00 
 3 3000 0.04 0.00 0.08 0.00 0.00 0.00 0.00 0.00 
 4 4000 0.08 0.00 0.08 0.00 0.00 0.00 0.00 0.00 

#Opt            64 87 88 104 
DevUb (%)   1.70 1.14 1.37 1.04 1.36 0.70 1.08 0.55 

Explanation: 

− See Table 6 
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Table 8.   Results for Set2, problem type III (C). 

m Q M B04 APT05 HI07 GR06 CLGAL 
      OF OF OF OF OG RG OF RF 

40 1 40 7.79 6.72 6.11 5.88 6.25 4.68 6.66 3.44 
 3 120 2.85 1.50 2.17 1.12 1.81 1.06 1.21 0.68 
 4 160 3.66 1.39 2.22 1.74 2.55 0.85 1.41 0.65 

50 1 50 5.28 5.04 4.58 4.35 4.94 2.56 4.64 2.10 
 3 150 2.39 1.50 1.82 1.26 1.88 0.98 1.28 0.74 
 4 200 2.42 1.18 2.13 1.29 1.57 0.93 1.05 0.46 

100 1 100 2.42 1.58 1.90 1.20 1.81 0.86 1.25 0.51 
 3 300 1.31 0.49 1.14 0.48 0.69 0.26 0.38 0.14 
 4 400 0.80 0.16 0.66 0.17 0.16 0.07 0.10 0.04 

150 1 150 1.61 1.25 1.45 0.99 1.83 0.94 0.87 0.23 
 3 450 0.67 0.16 0.32 0.17 0.45 0.13 0.10 0.01 
 4 600 0.81 0.10 0.62 0.14 0.28 0.20 0.05 0.01 

250 1 250 0.86 0.51 0.74 0.31 0.83 0.35 0.23 0.05 
 3 750 0.59 0.01 0.76 0.05 0.08 0.02 0.00 0.00 
 4 1000 0.43 0.00 0.33 0.03 0.04 0.01 0.00 0.00 

500 1 500 0.29 0.07 0.21 0.02 0.17 0.04 0.00 0.00 
 3 1500 0.20 0.00 0.28 0.03 0.01 0.00 0.00 0.00 
 4 2000 0.21 0.00 0.25 0.01 0.00 0.00 0.00 0.00 

1000 1 1000 0.09 0.00 0.19 0.01 0.00 0.00 0.00 0.00 
 3 3000 0.10 0.00 0.22 0.02 0.00 0.00 0.00 0.00 
 4 4000 0.09 0.00 0.29 0.01 0.00 0.00 0.00 0.00 

#Opt            67 95 92 115 
DevUb (%)   1.66 1.03 1.35 0.92 1.21 0.66 0.92 0.43 

Explanation: 

− See Table 6 
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Table 9.    Results for Set3 (C). 

Instance Container m M Optimum APT05 GR06 APT07 CLGAL 
  (L,W)       OF OF OF OG RG OF RF 
LC1 (400,200) 9 10 80000 80000 80000 80000 76000 80000 80000 80000 
LC2 (400,200) 7 15 79000 79000 79000 79000 79000 79000 79000 79000 
LC3 (400,400) 5 20 160000 154600 160000 160000 154600 155200 157300 154600 
J1 (70,80) 14 20 5600 5447 5600 5600 5400 5447 5600 5447 
J2 (70,80) 16 25 5540 5455 5540 5540 5368 5464 5512 5540 
J3 (120,45) 22 25 5400 5328 5400 5400 5400 5400 5400 5400 
J4 (90,45) 16 30 4050 3978 4050 4050 3978 4050 4050 4050 
J5 (65,45) 18 30 2925 2871 2925 2925 2925 2925 2925 2925 
LYT1 (150,110) 40 40 16500 15856 16172 16280 16084 16356 16196 16444 
LYT2 (160,120) 50 50 19200 18628 18860 19044 18840 19104 18908 19104 
DevOpt (%)         1.95 0.38 0.21 2.12 0.85 0.56 0.69 
#Opt         3 8 8 3 5 6 6 

Explanation: 

− The (best) packed area is shown per method and instance.  

− Optimal values are shown in bold face. 

− For the variables DevOpt and #Opt see main part.  
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Table 10.    Results for Set4 (C). 

Instance Container m M Optimum APT05 APT07 CLGAL 
  (L,W)       OF OF OG RG OF RF 

1-1 (20,20) 16 16 400 400 400 400 400 400 400 
1-2 (20,20) 17 17 400 386 400 373 396 396 400 
1-3 (20,20) 16 16 400 400 400 400 400 400 400 
2-1 (40,15) 25 25 600 590 600 600 600 600 600 
2-2 (40,15) 25 25 600 597 600 594 600 597 600 
2-3 (40,15) 25 25 600 600 600 600 600 600 600 
3-1 (60,30) 28 28 1800 1765 1800 1788 1800 1800 1800 
3-2 (60,30) 20 20 1800 1755 1800 1756 1796 1781 1800 
3-3 (60,30) 28 28 1800 1774 1800 1800 1800 1800 1800 
4-1 (60,60) 49 49 3600 3528 3580 3530 3600 3576 3600 
4-2 (60,60) 49 49 3600 3524 3564 3551 3596 3582 3600 
4-3 (60,60) 49 49 3600 3544 3580 3570 3600 3586 3600 
5-1 (60,90) 73 73 5400 5308 5342 5351 5400 5388 5400 
5-2 (60,90) 73 73 5400 5313 5361 5326 5400 5386 5400 
5-3 (60,90) 73 73 5400 5312 5375 5368 5400 5382 5400 
6-1 (80,120) 97 97 9600 9470 9548 9506 9588 9555 9588 
6-2 (80,120) 97 97 9600 9453 9448 9521 9600 9575 9600 
6-3 (80,120) 97 97 9600 9450 9565 9518 9594 9568 9600 
7-1 (160,240) 196 196 38400 37661 38026 38083 38337 38005 38328 
7-2 (160,240) 197 197 38400 37939 38145 38171 38394 38157 38385 
7-3 (160,240) 196 196 38400 37745 37867 38061 38379 38127 38342 

DevOpt (%)         1.50 0.47 1.09 0.08 0.40 0.02 
#Opt     3 9 5 13 6 17 
#Best         3 10 7   15   

Explanation:  

− The (best) packed area is shown per method and instance.  

− Optimal values are shown in bold face, best values with regard to subtypes OF and OG are shown in italics. 

− For the variables DevOpt, #Opt and #Best see main part. 
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Table 11.   Results for Set5 (C). 

Instance Container m Optimum FHZ98 APT02 MP07 CLGAL 
  (L,W)   (OG) OG OG OG OG RG 

CU1 (100,125) 25 12330 12312 12330 12330 12330 12352 
CU2 (150,175) 35 26100 25806 26100 26100 26100 26200 
CU3 (134,125) 45 16723 16608 16679 16723 16598 16723 
CU4 (285,354) 45 99945 98190 99366 99945 98764 99888 
CU5 (456,385) 50 173364 171651 173364 173364 171935 174057 
CU6 (356,447) 45 158572 158572 158572 158572 158572 158572 
CU7 (563,458) 45 247150 246860 247150 247150 246143 252318 
CU8 (587,756) 35 433331 432198 432714 433331 431126 438383 
CU9 (856,785) 25 657055 657055 657055 657055 657055 657828 
CU10 (794,985) 40 773772 764696 773485 773772 772118 776369 
CU11 (977,953) 50 924696 913387 922161 924696 918304 922576 
CW1 (125,105) 25 6402 6402 6402 6402 6402 6746 
CW2 (145,165) 35 5354 5354 5354 5354 5354 5548 
CW3 (267,207) 40 5689 5148 5689 5689 5689 5744 
CW4 (465,387) 39 6175 6168 6170 6175 6175 7496 
CW5 (524,678) 35 11659 11550 11644 11659 11644 11659 
CW6 (781,657) 55 12923 12403 12923 12923 12923 13011 
CW7 (376,374) 45 9898 9484 9898 9898 9425 9636 
CW8 (305,287) 60 4605 4504 4605 4605 4504 4736 
CW9 (405,362) 50 10748 10748 10748 10748 10748 11479 
CW10 (992,970) 60 6515 6116 6515 6515 6134 6306 
CW11 (982,967) 60 6321 6084 6321 6321 5940 6188 

DevOpt (%)      1.74 0.07 0.00 1.07 -1.73 
#Opt       5 15 22 10   

Explanation: 

− The (best) packed area (CU1-CU11) or the (best) packed value (CW1-CW11) is shown per method and instance.  

− Optimal values are shown in bold face. 

− For the variables DevOpt and #Opt see main part. 

− See the corresponding notes on Table 4 with regard to column CLGAL-RG. 
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Table 12.   Results for Set6 (UC). 

Instance Container m Optimum FHZ98 CLGAL 
  (L,W)     OG OG 

UU1 (500,500) 25 242919 241260 232481
UU2 (750,800) 30 595288 595288 582342
UU3 (1100,1000) 25 1072764 1072764 1056682
UU4 (1000,1200) 38 1179050 1178295 1170000
UU5 (1450,1300) 50 1868999 1868985 1866789
UU6 (2050,1457) 38 2950760 2950760 2883383
UU7 (1465,2024) 50 2930654 2930654 2900654
UU8 (2000,2000) 55 3959352 3959352 3929352
UU9 (2500,2460) 60 6100692 6100692 6027616
UU10 (3500,3450) 55 11955852 11955852 11749280
UU11 (3500,3765) 25 13157811 13141175 13060336
UW1 (500,500) 25 6036 6036 6036
UW2 (560,750) 35 8468 8468 8160
UW3 (700,650) 35 6302 6226 5964
UW4 (1245,1015) 45 8326 8326 7748
UW5 (1100,1450) 34 7780 7780 7780
UW6 (1750,1542) 47 6615 6615 5976
UW7 (2250,1875) 50 10464 10464 10464
UW8 (2645,2763) 55 7692 7692 7692
UW9 (3000,3250) 45 7038 7038 7038
UW10 (3500,3650) 60 7507 7507 7507
UW11 (555,632) 25 15747 15747 15747

DevOpt(%)      0.09 1.92
#Opt       17 7

Explanation: 

− The (best) packed area (UU1-UU11) or the (best) packed value (UW1-UW11) is shown per method and instance.  

− Optimal values are shown in bold face. 

− For the variables DevOpt and #Opt see main part. 

 


