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Abstract

The conditional Gauss–Hermite filter (CGHF) utilizes a decompo-

sition of the filter density by conditioning on an appropriate part of

the state vector. In contrast to the usual Gauss–Hermite filter (GHF)

it is only assumed that the terms in the decomposition can be ap-

proximated by Gaussians. Due to the nonlinear dependence on the

condition, quite complicated densities can be modeled, but the ad-

vantages of the normal distribution are preserved. For example, in

stochastic volatility models, the joint density of return and volatility

strongly deviates from a bivariate Gaussian, whereas the conditional

density can be well approximated by a normal distribution. As in the

GHF, integrals in the time and measurement updates can be com-

puted by Gauss–Hermite quadrature.
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1 Introduction

Diffusion processes with discrete time, noisy measurements (continuous-dis-

crete state space models) have found applications in many fields, including

engineering (Jazwinski; 1970; Daum; 1986; Ito and Xiong; 2000), finance

and economics (Black and Scholes; 1973; Bergstrom; 1976; Gandolfo; 1981),

physics (Haken; 1977; Stratonovich; 1989), and the social sciences (Coleman;

1968; Hamerle et al.; 1991).

A key tool to compute recursively the unobserved states and parameters is

the Kalman filter algorithm (Kalman; 1960). Nonlinear systems usually do

not allow exact solutions, except in special cases such as the Daum filter

(Daum; 1986). Then, approximations relating to the nonlinear drift and

diffusion functions or to the exact filter density must be employed.

The Gaussian filter (GF) assumes, that the true filter density p(y) can be

approximated by a Gaussian distribution φ(y). Thus, expectation values

occuring in the time and measurement update can be computed numerically

by Gauss–Hermite integration (GHF, cf. Ito and Xiong; 2000; Arasaratnam

et al.; 2007). There are important applications, however, where the joint

Gaussian assumption does not lead to satisfactory results. For example, if the

volatility parameter of an Ornstein-Uhlenbeck process is filtered (Bayesian

estimation), the measurements do not lead to any change in the conditional

volatility state. This stems from the fact, that the state vector (y(t), σ(t))

strongly deviates from a bivariate Gaussian, since the process y(t) is driven

by the product of the Gaussian volatility and the Wiener process (cf. fig. 5).

Similarly, stochastic volatility models (Scott; 1987; Hull and White; 1987;

Harvey et al.; 2004; Jimenez et al.; 2006) are not satisfactorily filtered by the

GHF and other filters relying on 2 moments, such as the extended Kalman

filter EKF, or the unscented Kalman filter UKF (cf. Julier and Uhlmann;

1997; Julier et al.; 2000; Julier and Uhlmann; 2004).

One can solve the problem by using analytic density approximations, e.g.

the Gaussian sum filter (Alspach and Sorenson; 1972; Ito and Xiong; 2000;

Arasaratnam et al.; 2007), or by expanding the density into a Fourier series,
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e.g. the Hermite expansion (Kuznetsov et al.; 1960; Challa et al.; 2000; Aı̈t-

Sahalia; 2002; Singer; 2008). Alternatively, Monte Carlo methods have found

widespread applications (e.g. Elerian et al.; 2001; Beskos et al.; 2006; Cappé

et al.; 2007; Fearnhead et al.; 2008).

In this paper, it is simply proposed to factorize the joint density of all states

y by using the partitioned state y = (y1, y2) such that p(y1|y2) is (approxi-

mately) conditionally Gaussian. Then, p(y1|y2)p(y2) ≈ φ(y1|y2)φ(y2) and the

numerical methods for the usual GHF can be adapted. 1

In section 2, static conditionally Gaussian models are discussed. This is

extended to dynamic models in sect. 3 and illustrated by the Ornstein-

Uhlenbeck process (Bayesian estimation of the volatility parameter). Section

4 develops the general conditional Gaussian filter whereas in section 5 recur-

sive ML estimation is compared with sequential filtering of σ using several

approximate nonlinear filters.

2 Conditionally Gaussian models

2.1 Example 1

For example, if y|µ, σ ∼ N(µ, σ), the joint density

p(y, µ, σ) = φ(y|µ, σ)p(µ, σ) ∝ (2πσ2)−1/2 exp[−1
2
(y − µ)2)/σ2] (1)

is of Gaussian shape as a function of µ, but not for σ [cf. figs. 1– 2 where

we set µ = 0 and used a prior p(σ) = φ(σ; 2, 1)]. The joint distribution

p(y, σ) = p(y|σ)p(σ) displays the variability in the variance of y. It cannot

be well approximated by a bivariate Gaussian φ(y, σ), as would be the case for

the Gaussian filter. From fig. 2 (right), it can be seen that the posterior mean

E[σ|y] depends on y and thus we obtain estimates of σ from observations

y, although the covariance Cov(y, σ) = E[yσ] − E[y]E[σ] = E[E[y|σ]σ] −
E[y]E[σ] = 0, since E[y|σ] = E[y] = µ = 0. In contrast, figs. 3–4 [setting

1I use the notation φ(y1|y2) = φ(y1;E[y1|y2],Var[y1|y2]) for the Gaussian density with

conditional moments.
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Figure 1: Conditional density φ(y|σ) and posterior density p(σ|y) with prior
p(σ) = φ(σ; 2, 1).
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Figure 2: Joint density φ(y|σ)p(σ) and posterior mean E[σ|y]. It depends on y
although Cov(y, σ) = 0 (see text).
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Figure 3: Conditional density φ(y|µ) and posterior density p(µ|y) with prior
p(µ) = φ(µ; 2, 1).
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Figure 4: Joint density φ(y|µ)p(µ) and posterior mean E[µ|y].
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σ = 1 and using a prior p(µ) = φ(µ; 2, 1)] display the joint distribution of y

and µ. Since the role of these variables is symmetric in eqn. 1, the Gaussian

shape is preserved and the regression E[µ|y] is linear. Thus, the estimation

of parameters related to the mean (e.g. drift coefficients) is much simpler as

compared to volatility parameters, where the regression E[σ|y] is nonlinear

(cf. fig. 2). In a bivariate Gaussian setting φ(y, σ), only a linear relation is

possible (cf. 3) �

Therefore, the idea is put forward, to represent the joint distribution of states

and volatilites p(y, σ) not by a joint Gaussian φ(y, σ), as in the Gaussian filter

(or EKF, UKF), but by the product φ(y|σ)φ(σ). This allows a fully nonlinear

specification of the conditional moments

E[y|σ] = µ1(σ) (2)

Var[y|σ] = Σ1(σ).

In contrast, the joint Gaussian assumption only allows the normal correlation

structure (Liptser and Shiryayev; 2001, ch. 13, theorem 13.1, lemma 14.1)

E[y|σ] = E[y] + Cov(y, σ)Var(σ)−(σ − E[σ]) (3)

Var[y|σ] = Var(y)− Cov(y, σ)Var(σ)−Cov(σ, y)

which is linear in the conditional mean and independent of σ for the condi-

tional variance (− denotes the generalized inverse). Put the other way round,

a bivariate Gaussian can be obtained by a linear µ1(σ) and constant Σ1(σ) =

Σ1.

More generally, the distribution p(y1, y2) of the vectors y1, y2 is not approxi-

mated by φ(y1, y2), but by

p(y1, y2) = p(y1|y2)p(y2) ≈ φ(y1|y2)φ(y2) (4)

= φ(y1;µ1(y2),Σ1(y2))φ(y2;µ2,Σ2),

where the conditional moments µ1(y2) = E[y1|y2],Σ1(y2) = Var(y1|y2) are

nonlinear functions of the conditioning states y2. Of course, the choice of y2

depends on the form of the true distribution p(y1, y2). It is chosen such, that
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p(y1|y2) is well approximated by a Gaussian with parameters µ1(y2),Σ1(y2).

In example 1, we must condition on y2 = (µ, σ) to get exactly p(y1|y2) =

φ(y1|y2). A jointly Gaussian φ(y1, y2) is included as a special case (linear

moments)

E[y1|y2] = E[y1] + Cov(y1, y2)Var(y2)
−(y2 − E[y2]) (5)

Var[y1|y2] = Var(y1)− Cov(y1, y2)Var(y2)
−Cov(y2, y1).

3 State space models

We want to filter the continuous-discrete state space model (Jazwinski; 1970)

dy(t) = f(y(t), t, ψ)dt+ g(y(t), t, ψ)dW (t) (6)

where discrete time measurements zi := z(ti) are taken at times {t0, t1, . . . , tT}
and t0 ≤ t ≤ tT according to the measurement equation

zi = h(y(ti), ti, ψ) + εi. (7)

In state equation (6), W (t) denotes an r-dimensional Wiener process and the

state is described by the p-dimensional state vector y(t). It fulfils a system of

stochastic differential equations in the sense of Itô (Arnold; 1974) with ran-

dom initial condition y(t0) ∼ p0(y, ψ). The functions f : Rp × R × Ru → Rp

and g : Rp × R × Ru → Rp × Rr are called drift and diffusion coefficients,

respectively. In measurement equation (7), εi ∼ N(0, R(ti, ψ))i.d. is a k-

dimensional discrete time white noise process (measurement error). Para-

metric estimation is based on the u-dimensional parameter vector ψ. For

notational simplicity, deterministic control variables x(t) are absorbed in the

time argument t. Moreover, the functions f and g may also depend on

nonanticipative measurements Zi = {z(tj)|j ≤ i}, ti ≤ t and h, R may de-

pend on lagged measurements Zi−1 = {z(tj)|j ≤ i − 1} allowing continuous

time ARCH specifications. In the linear case, the system is conditionally

Gaussian (cf. Liptser and Shiryayev; 2001, ch. 11). This dependence will be

dropped below.
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3.1 Example 2: Ornstein-Uhlenbeck process

The linear Gauss-Markov process is given by the SDE

dy(t) = λy(t)dt+ σdW (t) (8)

with measurement equation (i = 0, . . . , T )

zi = yi + εi (9)

where ψ = {λ, σ,R = Var(εi)} are unknown (nonrandom) parameters. For

simplicity, let λ = −1, R = 0.1 be known. Then, σ can be estimated by exact

ML or as Bayes estimator, using an extended state vector η = {y, σ}

dy = λydt+ σdW (t) (10)

dσ = 0 (11)

zi = yi + εi. (12)

The state extension leads to a nonlinear model in the variables, and thus to

a nonlinear filtering problem.

As shown in fig. 5 (top), the usual GHF using the moments µ = E({y, σ})
and Σ = Var({y, σ}) cannot filter the volatility state σ(t). The same applies

to the EKF and UKF methods, since they use the first and second moments

as well.

Now, if we note that dy|σ = λydt + σdW is Gaussian, the idea of the last

section turns over to the dynamic context. Using the exact discrete model

(EDM) at the measurement times ti, setting yi = y(ti) etc., we obtain

yi+1 = λiyi + σiui (13)

σi+1 = σi (14)

zi = yi + εi (15)

with the Gaussian error term ui =
∫ ti+1
ti exp[λ(ti+1−s)]dW (s) and the AR(1)

parameter λi = exp[λ(ti+1 − ti)].
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Figure 5: Ornstein-Uhlenbeck process y(t) with volatility parameter σ. Top:
Gauss–Hermite filter. Bottom: Conditional Gauss–Hermite filter. Left: true
(blue) and filtered state (green) ± 1 standard deviation (red). Right: true and
filtered volatility ± 1 standard deviation. Measurements are shown as dots.

3.1.1 Time update:

Assume that the posteriori density after measurement zi is conditionally

Gaussian, i.e. p(yi|σi, Zi) = φ(yi;E[yi|σi, Zi],Var[yi|σi, Zi]) and p(σi|Zi) =

φ(σi|Zi). Then, the time update p(yi+1|σi+1, Z
i) is again Gaussian with

parameters

E[yi+1|σi+1, Z
i] = λiE[yi|σi, Zi] (16)

Var[yi+1|σi+1, Z
i] = λiVar[yi|σi, Zi]λ′i + σiVar(ui)σ

′
i (17)

since σi+1 = σi in this simple example.

3.1.2 Measurement update:

At the time of measurement ti+1 the Bayes formula

p(yi+1, σi+1|zi+1, Z
i) =

p(zi+1|yi+1, σi+1, Z
i)p(yi+1, σi+1|Zi)

p(zi+1|Zi)
(18)
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can be evaluated easily due to the Gaussian densities (measurement and a

priori density)

p(zi+1|yi+1, σi+1, Z
i) = φ(zi+1; yi+1, R) (19)

p(yi+1, σi+1|Zi) = φ(yi+1|σi+1, Z
i)φ(σi+1|Zi). (20)

Since the measurements are linear, the normal correlation update (3) is exact

and one obtains

p(yi+1, σi+1|Zi+1) = φ(yi+1|σi+1, Z
i+1)p(σi+1|Zi+1) (21)

p(σi+1|Zi+1) = φ(zi+1|σi+1, Z
i)φ(σi+1|Zi)/p(zi+1|Zi). (22)

Thus, the posterior of σi+1 is nongaussian due to the nonlinear dependence of

Var(zi+1|σi+1, Z
i) = Var(yi+1|σi+1, Z

i)+R from σi+1 (cf. 17). This nonlinear

dependence is the reason why the posterior mean

E[σi+1|Zi+1] =
∫
σi+1p(σi+1|Zi+1)dσi+1 (23)

=
∫
σi+1φ(zi+1|σi+1, Z

i)φ(σi+1|Zi)dσi+1/p(zi+1|Zi)

is a function of the measurements, in contrast to the usual GHF. The inte-

gral can be computed by Gauss–Hermite integration (see appendix A). From

the posteriori moments E[σi+1|Zi+1] and Var(σi+1|Zi+1) one can construct a

Gaussian distribution and proceed in the recursive filter algorithm with the

next time update.

For the posterior mean of the state yi+1 we simply obtain the usual normal

correlation update

E[yi+1|σi+1, Z
i+1] = E[yi+1|σi+1, Z

i]

+ Var(yi+1|σi+1, Z
i)(Var(yi+1|σi+1, Z

i) +R)−1

× (zi+1 − E[yi+1|σi+1, Z
i]) (24)

etc. The a priori terms are given in (16). Figs. 5 (top, bottom) display the

difference in the performance of the GHF and the CGHF. In this picture, an

Ornstein-Uhlenbeck process was simulated according to (8) with parameters

ψ = (λ, σ,R = Var(εi)) = (−1, 2, 0.1) and sampling interval δt = 0.1. I used a
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simple Euler-Maruyama scheme (cf., e.g. Kloeden and Platen; 1992) on a grid

τj = t0 + jδt, j = 0, . . . , J = (tT − t0)/δt with discretization interval δt = 0.1.

The measurements were taken at times τ = {0, 4, 6, 8, 10, 11, 12, 13.5, 13.7, 15,

15.1, 17, 19, 20}. Clearly, the Gauss-Hermite filter (fig. 5, top) does not filter

the volatility process (Bayesian parameter) dσ = 0, whereas the CGHF,

due to the conditional Gaussian filter density, yields estimates of σ from the

observations y(ti) �

4 Conditional Gauss–Hermite filtering

In this section we derive a sequence of time update and measurement update

steps for the filter density p(y1, y2, t|Zi) which is approximated by the product

of Gaussians

p(y1, y2, t|Zi) ≈ φ(y1, t|y2, t, Z
i)φ(y2, t|Zi). (25)

The densities are evaluated at the time points τj = t0 + jδt, j = 0, . . . , J =

(tT − t0)/δt, and δt is an arbitrary (but small) discretization interval. The

times of measurement are given by ti = τji . The filter proceeds in a recur-

sive sequence of time update (dynamic moment equations) and measurement

updates (Bayes formula).

According to the Gaussian assumption (25) one has to consider the condi-

tional moments

E[y1(t)|y2(t), Z
i] = µ1(y2(t), Z

i) (26)

E[y2(t)|Zi] = µ2(t, Z
i) (27)

Var(y1(t)|y2(t), Z
i) = Σ1(y2(t), Z

i) (28)

Var(y2(t)|Zi) = Σ2(t, Z
i) (29)

and we seek recursive equations for their time evolution.

The state space model 6–7 is written in partitioned form (y1 : p1×1, g1 : p1×r
etc.; dropping ψ)

dy1(t) = f1(y1, y2, t)dt+ g1(y1, y2, t)dW (t) (30)

dy2(t) = f2(y1, y2, t)dt+ g2(y1, y2, t)dW (t) (31)
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with measurements at ti

zi = h(y1(ti), y2(ti), ti) + εi. (32)

4.1 Time update

In a short time step δt, the Euler-Maruyama approximation for the Itô equa-

tions (30–31) is

y1(t+ δt) = y1(t) + f1(y1, y2, t)δt+ g1(y1, y2, t)δW (t) (33)

y2(t+ δt) = y2(t) + f2(y1, y2, t)δt+ g2(y1, y2, t)δW (t) (34)

and we find the moment equations (dropping the dependence on Zi)

E[y1(t+ δt)|y2(t)] = E[y1(t)|y2(t)] + E[f1(y1, y2, t)|y2(t)]δt (35)

E[y2(t+ δt)] = E[y2(t)] + E[f2(y1, y2, t)]δt (36)

The second moments read

Var[y1(t+ δt)|y2(t)] = Var[y1(t)|y2(t)] +

Cov[y1(t), f1(y1, y2, t)|y2(t)]δt+

Cov[f1(y1, y2, t), y1(t)|y2(t)]δt+

E[g1g
′
1(y1, y2, t)|y2(t)]δt (37)

Var[y2(t+ δt)] = Var[y2(t)] +

Cov[y2(t), f2(y1, y2, t)]δt+

Cov[f2(y1, y2, t), y2(t)]δt+

E[g2g
′
2(y1, y2, t)]δt. (38)

The expectation values on the right hand sides are with respect to the distri-

butions φ(y1(t)|y2(t), Z
i) and φ(y2(t)|Zi) and can be evaluated using Gauss–

Hermite quadrature (appendix A). For example

E[f1(y1, y2, t)|y2(t)] =
∫
f1(y1, y2, t)φ(y1;µ1(y2),Σ1(y2))dy1 (39)

≈
L∑
l=1

f1(η1lm, η2m, t)w1l (40)
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where

η2m = µ2 + Σ
1/2
2 ζ2m : p2 × 1 (41)

η1lm = µ1(η2m) + Σ
1/2
1 (η2m)ζ1l : p1 × 1 (42)

are Gauss–Hermite sample points for the integration over y2 and y1 (condi-

tional on the values y2 = η2m). The sample points depend on the conditional

moments µ2 = E[y2,t|Zi] and µ1(y2) = E[y1,t|y2,t, Z
i]. Thus, one has y1-

sample points η1lm for each y2-coordinate η2m; l = 1, . . . , L;m = 1 . . .M (cf.

fig. 6). Similarly,

E[f2(y1, y2, t)] =
∫ ∫

f2(y1, y2, t)φ(y1;µ1(y2),Σ1(y2))

× φ(y2;µ2,Σ2)dy1dy2

≈
L,M∑
l,m=1

f2(η1lm, η2m, t)w1lw2m. (43)

Now it is assumed that E[y1(t+ δt)|y2(t)] ≈ E[y1(t+ δt)|y2(t+ δt)] etc. and

using this approximation the time update is continued over the complete

time interval [ti, ti+1].

4.2 Measurement update

At time ti+1, new measurements zi+1 come in, which are incorporated by

using the Bayes formula (setting yi+1 := y(ti+1) etc.)

p(y1,i+1, y2,i+1|zi+1, Z
i) =

p(zi+1|y1,i+1, y2,i+1)p(y1,i+1, y2,i+1|Zi)

p(zi+1|Zi)
.

(44)

The product of the measurement density

p(zi+1|y1,i+1, y2,i+1) = φ(zi+1;h(y1,i+1, y2,i+1, ti+1), Ri+1) (45)

with the a priori distribution

p(y1,i+1, y2,i+1|Zi) = φ(y1,i+1|y2,i+1, Z
i) ∗ φ(y2,i+1|Zi) (46)

can be evaluated approximately by the normal correlation update as

φ(y1,i+1|y2,i+1, Z
i+1) ∗ φ(zi+1|y2,i+1, Z

i) ∗ φ(y2,i+1|Zi) (47)

12
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Figure 6: Conditional Gauss–Hermite sample points for the Ornstein-Uhlenbeck
process (L = 11,M = 11) before and after the measurements. The weights are
symbolized through the thickness of the dots. Also displayed is the conditional
mean and standard deviation µ1(η2m)± Σ

1/2
1 (η2m) (red).

13



where φ(zi+1|y2,i+1, Z
i) = φ(zi+1;E[h|y2,i+1, Z

i],Var[h|y2,i+1, Z
i] + Ri+1) is

the conditional likelihood of zi+1 given y2,i+1. The moments of the posterior

of y1|y2 are given by

E[y1,i+1|y2,i+1, Z
i+1] = E[y1,i+1|Fi+1] + Cov[y1,i+1, zi+1|Fi+1]

× Var[zi+1|Fi+1]
−(zi+1 − E[zi+1|Fi+1])

Var[y1,i+1|y2,i+1, Z
i+1] = Var[y1,i+1|Fi+1]− Cov[y1,i+1, zi+1|Fi+1]

× Var[zi+1|Fi+1]
−Cov[zi+1, y1,i+1|Fi+1]

where Fi+1 = {y2,i+1, Z
i} is shorthand for the conditioning variables. Now the

moments of the priori distribution (E[y1,i+1|y2,i+1, Z
i],Var[y1,i+1|y2,i+1, Z

i],

E[y2,i+1|Zi],Var[y2,i+1|Zi]) are known from the time update and the expec-

tations can be evaluated by Gauss–Hermite integration again. For example

E[zi+1|y2,i+1, Z
i] = E[h(y1,i+1, y2,i+1, ti+1)|y2,i+1, Z

i] (48)

≈
L∑
l=1

h(η1lm, η2m, ti+1)w1l (49)

where again

η2m = µ2 + Σ
1/2
2 ζ2m (50)

η1lm = µ1(η2m) + Σ
1/2
1 (η2m)ζ1l (51)

are the Gauss–Hermite sample points evaluated at the a priori moments

(µ2 = E[y2,i+1|Zi], µ1(y2) = E[y1,i+1|y2,i+1, Z
i]) etc.

The posteriori distribution for y2 is given by (cf. 47)

p(y2,i+1|Zi+1) = φ(zi+1|y2,i+1, Z
i)φ(y2,i+1|Zi)/p(zi+1|Zi). (52)

Now, since

E[zi+1|y2,i+1, Z
i] = E[h(y1,i+1, y2,i+1, ti+1)|y2,i+1, Z

i] (53)

Var[zi+1|y2,i+1, Z
i] = Var[h(y1,i+1, y2,i+1, ti+1)|y2,i+1, Z

i] +Ri+1 (54)

are in general nonlinear functions of y2,i+1 (cf. example 2; 17), the measure-

ment zi+1 is informative for the ’volatility state’ y2,i+1 and one obtains the
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likelihood of observation zi+1 and the posterior mean of y2

p(zi+1|Zi) =
∫
φ(zi+1|y2,i+1, Z

i)φ(y2,i+1|Zi)dy2,i+1

≈
M∑
m=1

φ(zi+1|η2m, Z
i)w2m (55)

E[y2,i+1|Zi+1] = p(zi+1|Zi)−1
∫
y2,i+1φ(zi+1|y2,i+1, Z

i)

× φ(y2,i+1|Zi)dy2,i+1

≈ p(zi+1|Zi)−1
M∑
m=1

η2mφ(zi+1|η2m, Z
i)w2m (56)

(analogously for Var[y2,i+1|Zi+1]).

Starting from the a priori moments µ1(y2(t0)) = E[y1(t0)|y2(t0)], µ2 = E[y2(t0)]

etc. one obtains a recursive sequence of measurement and time updates for

the moments and the Gauss–Hermite sample points (cf. fig. 6).

4.3 Complete filter

Putting together the measurement update and the time update, one obtains

a recursive sequence of moments (26-29) at the measurement times ti and

for the time points τj = ti + jδt, j = 1, . . . , (ti+1 − ti)/δt in between. The

unconditional moments (w.r.t. y2, dropping Zi) can be computed from the

filter terms as

E[y1(t)] = E[E[y1(t)|y2(t)]] (57)

Var[y1(t)] = E[(y1(t)− µ1(t))(y1(t)− µ1(t))
′]

= E[Var(y1(t)|y2(t))] + Var(E[y1(t)|y2(t)]) (58)

(residual variance + explained variance).

For the starting values I used µ1(y2(t0)) = µ1,Σ1(y2(t0)) = Σ1 (indepen-

dent of y2) and µ2 = E[y2(t0)],Σ2 = Var[y2(t0)]. Thus, the prior p0 =

p(y1(t0)|y2(t0))p(y2(t0)) is a Gaussian distribution with uncorrelated states

y1(t0), y2(t0). After the first measurement update one obtains η2m and µ1(η2m),

i.e. the unknown function µ1(y2) is determined on the sample points η2m

(same for Σ1(y2)). Iterating, one obtains the regression functions µ1(y2) etc.

in a nonparametric way.
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5 Example 3:

ML vs. recursive Bayesian estimation

5.1 Log volatility model

In example 2, the Ornstein-Uhlenbeck process was discussed. It is interesting

to compare exact ML estimation of σ = exp(h) with (approximate) recur-

sive Bayesian filtering.2 As noted, the likelihood of the parameter h can be

computed exactly by using the Kalman filter, i.e.

µi+1|i = λiµi|i

Σi+1|i = λiΣi|iλ
′
i + Ωi

µi+1|i+1 = µi+1|i +Ki(zi+1 − µi+1|i)

Ki = Σi+1|i(Σi+1|i +R)−

Σi+1|i+1 = (I −Ki)Σi+1|i

Li+1(zi+1) = φ(zi+1;µi+1|i,Σi+1|i +R).

In the formulae above, λi = exp[λ(ti+1−ti)], Ki is the Kalman gain and Ωi =

Var(σui) = σ2(1−exp(2λ∆ti))/(2λi) is the variance of the system error ui (cf.

13). As usual, µi+1|i = E[yi+1|Zi] etc. denotes the conditional expectations.

Starting from a flat prior with Σ0|−1 = 10 one obtains the ML estimator

by maximizing l(h) =
∑t
i=0 log(Li). The ML estimator ĥ(t) was computed

recursively for the sampled data set z(t0), . . . , z(t), t = t0, . . . , tT , where t0 =

0 and tT = 20. Actually, the computations were done on a grid with spacing

(discretization interval) δt = 0.1 and zj = z(τj), τj = t0 + jδt, ti = τji .

The values zj between the measurements z(ti) are considered as missing (cf.

Singer; 1995). The true parameter values were λ = −1, σ = 2, R = 0.1.

Fig. 7 shows a comparision of the sequential estimates of h = log(σ) using

maximum likelihood (ML), the CGHF ((L,M) = (3, 3), . . . , (21, 21) sample

points), the Gaussian sum filter implemented with EKF, GHF and UKF

2Here I use the log volatility h = log(σ) parametrization in order to avoid bimodality

in the marginal distribution of σ.
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Figure 7: Discrete sampling: Sequential estimation of the parameter h = log σ:
Maximum likelihood (top, left), CGHF (top, right), Sum filter/GHF (bottom,
left), Monte Carlo filter (bottom, right). Estimates ĥ(t)± std(ĥ(t)) (see text).
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Figure 8: Quasi-continuous sampling: Sequential estimation of the parameter
h = log σ: Maximum likelihood (top, left), CGHF (top, right), Sum filter/GHF
(bottom, left), Monte Carlo filter (bottom, right). Estimates ĥ(t) ± std(ĥ(t))
(see text).
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discrete sampling
method CPU time bias std bias std

(sec) (t = 10) (t = 20)
ML, linearized 19.11 0.1349 0.4111 0.0126 0.2150

nonlinear 18.25 0.1080 0.4112 -0.0184 0.2156
CGHF
(M,L) = (3, 3) 0.27 -0.2014 0.5188 -0.1499 0.2855
(M,L) = (4, 4) 0.35 -0.0506 0.6166 -0.1017 0.3011
(M,L) = (5, 5) 0.46 -0.1079 0.4803 -0.087 0.2256
(M,L) = (11, 11) 1.30 -0.0216 0.4702 -0.0554 0.2190
(M,L) = (21, 21) 3.71 0.0001 0.4639 -0.0491 0.2181
CUKF (κ = 1) 0.27 -0.0961 0.4791 -0.0913 0.2404
CUKF (κ = 2) 0.27 -0.2014 0.5188 -0.1499 0.2855
Sum filter N = 50
EKF 1.91 0.0752 0.4366 0.0133 0.2012
GHF (M = 3) 5.79 0.0818 0.4358 0.0199 0.2001
UKF (κ = 1) 5.69 0.0818 0.4358 0.0199 0.2001
Monte Carlo
N = 50 0.42 0.1085 0.5805 -0.0107 0.4392
N = 50, antithetic, sorted 0.44 0.0383 0.4693 -0.0053 0.3466
N = 100 0.88 0.0946 0.4839 -0.0079 0.2802
N = 100, antithetic, sorted 0.93 0.0544 0.4632 -0.0391 0.2837

Table 1: Simulation study (discrete sampling): CPU times, bias and standard
deviation of ĥ(t), t = 10, 20 for several algorithms. (M,L) denotes the number
of Gauss-Hermite sample points for y and h, κ is the UKF tuning parameter,
and N is the number of terms in the sum approximation (or Monte Carlo sample
size).

updates and N = 50 terms in the density expansion (GSF/EKF, GHF, UKF,

cf. Ito and Xiong; 2000; Arasaratnam et al.; 2007, and appendix B), and a

Monte Carlo (MC) filter with sample size N = 50, 100 (sample-importance-

resample (SIR); for details, cf. Singer; 2002). Variance reduction (antithetic

sampling) and sorting of the sample is used also (Kitagawa; 1996).

The data were measured at times τ = {0, 4, 6, 8, 10, 11, 12, 13.5, 13.7, 15, 15.1,

17, 19, 20}.
If denser measurements are used (τ = {0, 0.1, 0.2, . . . , 20}), the convergence

is more quickly (cf. fig. 8, using quasi-continuous sampling). Sequential ML

works well, but for each estimate ĥ(t), a nonlinear optimization problem has
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continuous sampling
method CPU time bias std bias std

(sec) (t = 10) (t = 20)
ML, linearized 93.86 0.0178 0.1067 0.0103 0.0690

nonlinear 151.71 -0.0296 0.1073 -0.0369 0.0694
CGHF
(M,L) = (3, 3) 0.77 0.0045 0.1153 0.0029 0.0778
(M,L) = (4, 4) 1.04 0.0045 0.1110 0.0037 0.0707
(M,L) = (5, 5) 1.35 0.0045 0.1095 0.0038 0.0708
(M,L) = (11, 11) 3.91 0.0061 0.1099 0.0045 0.0707
(M,L) = (21, 21) 11.32 0.0062 0.1099 0.0046 0.0706
CUKF (κ = 1) 0.75 0.0080 0.1276 0.0082 0.0910
CUKF (κ = 2) 0.79 0.0045 0.1153 0.0029 0.0778
Sum filter N = 50
EKF 4.24 0.0347 0.1126 0.0297 0.0703
GHF M = 3 9.67 0.0416 0.1119 0.0348 0.0684
UKF κ = 1 8.70 0.0416 0.1119 0.0348 0.0684
Monte Carlo
N = 50 3.04 0.0442 0.2636 0.0326 0.2476
N = 50, antithetic, sorted 3.25 -0.0061 0.1862 -0.0109 0.1849
N = 100 7.04 0.0137 0.1475 -0.0143 0.1306
N = 100, antithetic, sorted 7.76 -0.0161 0.1497 -0.0069 0.1455

Table 2: Simulation study (continuous sampling): CPU times, bias and standard
deviation of ĥ(t), t = 10, 20 for several algorithms. (M,L) denotes the number
of Gauss-Hermite sample points for y and h, κ is the UKF tuning parameter,
and N is the number of terms in the sum approximation (or Monte Carlo sample
size).

to be solved. I used a quasi Newton algorithm with BFGS secant update and

numerical score (Dennis Jr. and Schnabel; 1983). The estimate ĥ(τj−1) was

used as starting value for the next maximization at time τj. In order to avoid

numerical problems, the shortest data set was {z0, . . . , z80}; z(τ80) = 8. In

contrast, the considered nonlinear filters work sequentially without iterative

optimization.

5.2 Simulation study

In a simulation study with M = 100 replications, the ML estimates and

filter solutions were computed. CPU times, bias and standard errors for the

19



Out[150]=

0 50 100 150 200

-0.5

0.0

0.5

Out[142]=

0 50 100 150 200

-0.5

0.0

0.5

Out[154]=

0 50 100 150 200

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Out[136]=

0 50 100 150 200

-0.5

0.0

0.5

Figure 9: Simulation study (M = 100 replications):
Top: Bias (green) and standard error (red) for ML and CGHF(5,5) estimates
(opaque colors). Left: discrete sampling, right: continuous sampling. The ML
estimates were computed sequentially starting from τ80 = 8 (δt = 0.1; see text).
Bottom: Bias (green) and standard error (red) for ML and MC (N = 100;
antithetic, sorted) estimates (opaque colors). Left: discrete sampling, right:
continuous sampling.

several algorithms are shown in tables 1 and 2 for discrete and continuous

sampling (Mathematica 7, Intel Core 2 Duo 2.4 GHz).

The entries in column 3–6 are the 2nd components of the estimated bias

ν̄j = M−1 ∑
m νmj with νmj := h − E[ymj2|Zj

m] (filter) and νmj := h − ĥmj
(ML), where h = log(2) is the true value of the log volatility. E[ymj2|Zj

m]

is the 2nd component of the filter solution at time j (τj = t0 + jδt) for

replication m, whereas ĥmj is the respective ML estimate. The tabulated

times are j = 100, 200 (t = 10, 20). The standard deviation is defined as

stdj =
√
M−1

∑
m(νmj − ν̄j)2.

The prior distribution of the nonlinear filters was taken as N(µ0,Σ0), µ0 =

{0, log(4)},Σ0 = diag(1, 10/4). This is motivated as follows: The true value

of σ = exp(h) = 2 is not known and was set to the wrong value 4. The

prior variance Σ0 should be set to diag(K1, K2) with K1,2 → ∞. For the

prior variance of σ, a (not too large) value of 10 was chosen, leading to
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Var(log(σ)) ≈ Var(σ)/σ2 = 10/4. Large K-values may lead to numerical

instabilities in the filter algorithms.

Comparison of methods:

• discrete sampling

1. ML

The ML estimator is positively biased for the short data set (t =

10, 5 data points), but the exact ML estimator performs better as

the linearized (exp(λδt) ≈ 1 + λδt). At t = 20 (14 data points),

the bias is negligible.

2. CGHF

The CGHF performed stable and fast (for a small number of

Gauss-Hermite sample points), but is negatively biased for the

short data set (t = 10).

3. CUKF

Alternatively, the integrations can be done by using the unscented

transform (UT) with sigma points, leading to a conditional un-

scented Kalman filter (CUKF). The choice of the UKF scale para-

meter κ is somewhat arbitrary, however. The choice κ = 2 is

equivalent to M = 3 in one dimension (Ito and Xiong; 2000).

4. GSF

The Gaussian sumfilter (N = 50) is considerably slower, espe-

cially using GHF and UKF updates, and the bias is comparable

to CGHF(5,5).

5. MC

The Monte Carlo filter is fast and displays a bias comparable to

ML, but the standard error is slightly higher.

• continuous sampling
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In this case all algorithms perform well in terms of bias. However, the

MC approach shows higher standard errors. This might be attributed

to simulation sampling error.

6 Conclusion

We have shown how the filtering of volatility parameters can be achieved

by a simple probabilistic assumption. Instead of taking the joint Gaus-

sian φ(y1, y2) as approximate filter density, the conditional Gaussian product

φ(y1|y2)φ(y2) was used, leading to a nonlinear dependence of E[y1|y2] and

Var(y1|y2) on y2. In contrast, a joint Gaussian assumption can only ac-

comodate a linear regression E[y1|y2] = a + by2 and a constant variance

Var[y1|y2] = Var[y1] − Cov(y1, y2)Var(y2)
−Cov(y2, y1). However, in stochas-

tic volatility models, the variance of y1 is dependent on y2. The Gaussian

product is the simplest assumption for this type of nonlinear problems and

leads to an efficient and stable algorithm using Gauss-Hermite quadrature.

Alternatively, the integrations can be done using the unscented transform

(UT) leading to a conditional unscented Kalman filter (CUKF). Since the

conditional Gauss-Hermite sample points η1lm, η2m are computed recursively,

there is no need to specify a parametric form for the conditional expectations

E[y1|y2] and Var[y1|y2].

The simple algorithm performs well in relation to sum filters and Monte Carlo

approaches, although these methods are more general. Especially, the MC

approach is exact in the limit of large MC sample size.

Appendix A: Gauss–Hermite integration

The moment equations of the (C)GHF require the computation of expecta-

tions of the type E[f(Y )], where Y is a random variable with density p(y).

For the Gaussian filter, one may assume that the true p(y) is approximated

by a Gaussian distribution φ(y;µ, σ2) with the same mean µ and variance
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σ2. Then, the Gaussian integral

Eφ[f(Y )] =
∫
f(y)φ(y;µ, σ2)dy =

∫
f(µ+ σz)φ(z; 0, 1)dz

≈
m∑
l=1

f(µ+ σζl)wl =
m∑
l=1

f(ηl)wl

may be approximated by Gauss–Hermite quadrature (Ito and Xiong; 2000)

Here, (ζl, wl) are quadrature points and weights, respectively. If such an

approximation is used, one obtains the Gauss–Hermite filter (GHF). Filters

using Gaussian densities are called Gaussian filters (GF). More generally, the

density may be approximated by the product of conditionally Gaussian den-

sities φ(y1|y2)φ(y2) (CGHF) which again yields integrals w.r.t. the Gaussian

density i.e. E[f(Y )] =
∫
f(y1, y2)φ(y1|y2)φ(y2)dy1dy2.

In the multivariate case, the integration is performed using standardization

with some matrix square root (e.g. the Cholesky decomposition)

Eφ[f(Y )] =
∫
f(y)φ(y;µ,Σ)dy

=
∫
f(µ+Σ1/2z)φ(z; 0, I)dz1...dzp

≈
∑
l1,...,lp

f(µ+Σ1/2{ζl1 , ..., ζlp})wl1,...,lp

=
∑
l1,...,lp

f(ηl1 , ..., ηlp)wl1,...,lp ,

since φ(z; 0, I) = φ(z1; 0, 1)...φ(zp; 0, 1) allows stepwise application of the

univariate quadrature formula and {ζl1 , ..., ζlp}, lj = 1, ...,m, is the p-tuple of

Gauss–Hermite quadrature points with weights wl1,...,lp = wl1 ...wlp .

Appendix B: Sum filter

The filter density p(y, t|Zt) = p(y) may be approximated by conditioning on

a discrete random variable I, so that

p(y) =
∑
i

p(y|i)pi ≈
∑
i

φ(y|µi, Σi)pi.

Thus it is assumed that the conditional distribution of Y in subsamples

(groups) indexed by I = i can be well described by gaussians. The (approx-
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imate) mean and variance of y can be expressed as weighted sums

E[Y ] =
∑
i

µipi

Var[Y ] =
∑
i

Σipi + (µi − µ)(µi − µ)′pi = SSW + SSB.

Thus the total variance can be decomposed in a variance within and be-

tween groups. The exact equations for the moments µ(t) = E[Y (t)], Σ(t) =

Var[Y (t)] read (time update; t ∈ [ti, ti+1])

µ̇ = E[f(Y )]

Σ̇ = Cov(f, Y ) + Cov(Y, f) + E[Ω].

Inserting the expressions for the moments and the density expansion one gets

∑
i

µ̇ipi =
∑
i

Ei[f(Y )]pi ⇒ µ̇i = Ei[f(Y )]

and

Σ̇ =
∑
i

Σ̇ipi + (d/dt)[(µi − µ)(µi − µ)′],

where the notation Ei[Y ] =
∫
yφ(y|µi,Σi)dy means averaging in the ith

group. Writing

Cov(f, Y ) =
∑
i

Ei[f(Y )(Y − µi + µi − µ)]pi

=
∑
i

Covi(f, Y ) + Ei(f)(µi − µ)

and inserting µ̇i = Ei[f ] one obtains the exact equation

Σ̇i = Covi(f, Y ) + Covi(Y, f) + Ei[Ω]

for the second moments. These moment equations can be approximated

in the EKF style (Taylor expansion of f and Ω, by using Gauss-Hermite

integration or the unscented transform. In this way one obtains the Gaussian

sum filter (GSF/EKF) of Alspach and Sorenson (1972) or variants such as

GSF/GHF or GHF/UKF (Ito and Xiong; 2000).
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