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Abstract

This paper introduces a new method for nonlinear continuous-discrete fil-
tering. It is shown that the Fokker-Planck -Equation can be solved nu-
merically by using distributed approximating functionals (DAFs). The
approximation is very accurate and resolves the time interval between ob-
servations in one calculation step. Additionally, the operator matrix has to
be evaluated only once and not necessarily online. Therefore the method
is very efficient.

Keywords: Fokker-Planck -Equation; Distributed Approximating Func-
tionals; Continuous-Discrete Nonlinear Filter.

1. Introduction

Continuous-discrete nonlinear filters are an active field of research in engineer-
ing and applied statistics. They are extremely useful in describing diffusion
processes with discrete noisy observations. Since the pioneering contributions
of Kalman (1960) and Schmidt (1966), tremendous progress has been achieved.
Modern filter designs are highly diversified in their strategies of state propaga-
tion and handling of nonlinearities of the measurement model.

Historically, the first applicable continuous-discrete nonlinear filter was
derived as generalization of the the classical extended Kalman-Filter (EKF,
Jazwinski, 1970, chap. 6 & 9). The generalization of discrete time filters to
continuous time is a concept, which has proven both fruitful and universal in
subsequent, more sophisticated filtering schemes. Many modifications have been
suggested to improve the quality of the nonlinear filter approximation. An in-
complete list includes sum filter approaches (Sorenson and Alspach, 1971; Ito
and Xiong, 2000), local linearization techniques (Shoji and Ozaki, 1997; Shoji,
1998), quadrature methods (Julier and Uhlmann, 1997, 2004; Julier et al., 2000;
Ito and Xiong, 2000), multigrid methods and point-mass approximations (Kita-
gawa, 1987; Kramer and Sorenson, 1988; Šimandl et al., 2006). Remarkably,
Daum (1986) was able to derive an exact nonlinear filter for a small class of
diffusion problems, extending the work of Beneš (1981, 1985).
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An approach more tailored to the continuous time evolution of the state
involves the immediate manipulation of the Fokker-Planck -operator, or the cor-
responding backward-operator, respectively. This strategy was first suggested
for pure diffusions by Aït-Sahalia (2002), in order to obtain closed equations for
higher moments (see also Jensen and Poulsen, 2002). These moments were used
in a series expansion around the normal density, involving Hermite-polynomials.
The approach was later modified and generalized by Singer (2006, 2008). Such
methods suffer from problems of a particular kind; due to finite series expansion
they can generate locally negative density approximations.

After the seminal paper of Gordon et al. (1993), a promising new class of
stochastic particle filters became a rapidly evolving field of research. A few im-
portant cornerstones are the bootstrap-/SIR filter (Gordon et al., 1993; Liu and
Chen, 1998; Liu et al., 1998), the auxiliary particle filter (Pitt and Shephard,
1999), The Rao-Blackwell ized- or mixture Kalman-Filter (Chen and Liu, 2000;
Andrieu and Doucet, 2002), the rejection particle filter Tanizaki (1999a,b, 2001)
and the MCMC particle filter of Berzuini et al. (1997). An excellent review of
recent advances in sequential Monte-Carlo-filtering is provided in Arulampalam
et al. (2002) and Cappé et al. (2007). Particle filters are incredibly successful
in estimating latent states in nonlinear problems and they can partially beat
the curse of dimensionality, but they suffer from a major drawback; resampling
steps are necessary to avoid sample degeneration and thus the likelihood func-
tion becomes fuzzy (see for example Singer, 2003). Recent approaches try to
overcome this problem (Pitt, 2002; Beskos et al., 2006), but they are only valid
for a limited class of problems.

In this article a new nonlinear filter is suggested, which is capable of solving
the nonlinear filtering problem with predefined accuracy, generating a perfectly
smooth likelihood surface. Furthermore, the continuous state evolution is calcu-
lated in one step, without introducing a discrete skeleton of intermediate time
intervals. This is accomplished by representing the Fokker-Planck -operator in
matrix form with help of distributed approximating functionals (Hoffman et al.,
1991; Hoffman and Kouri, 1992; Wei et al., 1997; Zhang et al., 1997a,b). As a
result, the method is very efficient and extremely fast. Even though it is best
suited for stationary processes, because it operates on a discrete spatial grid, it
is not limited to a particular class of diffusions.

The remainder of the paper is organized as follows: Section 2 introduces
distributed approximating functionals and the necessary formalism to operate
them. In sections 3 and 4, a moment based- and an exact version of the DAF-
Filter is derived in one dimension. Both algorithms are compared in section 5 by
reference to a bimodal diffusion problem due to Ginzburg and Landau (1950).
This problem is known to be a challenging benchmark for nonlinear filters.
Both, state- and parameter estimation via maximum likelihood are surveyed
with simulated data. In section 6 the formalism is extended to cover higher
dimensional problems. The procedure is exercised on a simple but instructive
example, which demonstrates the advantages of a density based filter over a
moment based one. In section 7 the full potential of the method is demonstrated
in a bivariate limit cycle diffusion with full nonlinear observation model. Section
8 closes the paper with a brief discussion of the advantages, weaknesses and
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further research perspectives of the method.

2. Distributed Approximating Functionals

In this section a brief review of the distributed approximating functional (DAF)
formalism is presented. For a more elaborate treatment on this subject see
Hoffman et al. (1991); Hoffman and Kouri (1992) and Zhang et al. (1997a,b).

Formally, DAFs are characterized as approximate mapping of a certain set of
continuous L2 functions to itself (Zhang et al., 1997a,b). Consider the definition
of Diracs δ-function

f(x) =
∫
δ(x− x′)f(x′)dx′. (1)

Now a particular class of DAF-functions, the Hermite-DAFs, can be used to
approximate the δ-function in a very convenient way

f(x) ≈
∫
δM (x− x′;σ)f(x′)dx′, (2a)

with

δM (x;σ) =
1
σ
φ
(x
σ

) M/2∑
m=0

1
m!

(
−1
4

)m
H2m

(
x√
2σ

)
. (2b)

In (2b), φ(x) denotes the standard normal probability density function and
Hn(x) is the n-th Hermite-polynomial, orthogonal with respect to the weight
function e−x2 . Notice that only even Hermite-polynomials are used because the
δ-function is symmetric in its argument. Furthermore, M is the highest degree
polynomial involved in the construction of the DAF and σ is its bandwidth.
Obviously, the mapping is exact for polynomials of degree less or equal toM+1,
but polynomials are clearly not L2. This emphasizes the character of the DAFs
as approximate, rather than exact, mapping on the Hilbert-space of L2 functions
(Zhang et al., 1997b).

The parameters M and σ of the Hermite-DAF control the accuracy of the
approximation. By fixing one or the other, one obtains

lim
M→∞

∫
δM (x− x′;σ)f(x′)dx′ = lim

σ→0

∫
δM (x− x′;σ)f(x′)dx′ = f(x), (3)

which is an alternative way of defining the δ-function (Lighthill, 1966, chap. 2.2).
Detailed numerical analysis about the optimal choice of M and σ is provided in
Wei et al. (1997) and Zhang et al. (1997b).

The DAF mapping can be used to sample the function of interest only at
discrete points. If these quadrature points form an equispaced grid, equation
(2a) can be approximated by

f(x) ≈ ∆x
N∑
j=1

δM (x− xj ;σ)f(xj), (4)
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with ∆x = xj − xj−1. Equation (4) suggests that DAFs are particularly suited
for interpolation purposes (Hoffman et al., 1998). But the potential of the DAF-
approach extends far beyond interpolation. Consider the definition of the l-th
derivative of Diracs δ-function

f (l)(x) =
∫
δ(l)(x− x′)f(x′)dx′. (5)

Usually, this relation cannot be exploited for numerical purposes, because the
derivative of the δ-function is not defined directly in the class of distributions.
The operation of differentiation has to be rolled over to f(x) by partial integra-
tion first. But if a differentiating Hermite-DAF is defined by

δ
(l)
M (x;σ) =

(−1)l

2l/2σl+1
φ
(x
σ

) M/2∑
m=0

1
m!

(
−1
4

)m
H2m+l

(
x√
2σ

)
, (6)

the derivative (5) can be approximated by

f (l)(x) ≈ ∆x
N∑
j=1

δ
(l)
M (x− xj ;σ)f(xj). (7)

Thus, the operation of differentiation has turned into an algebraic operation.
Furthermore, the derivative is approximated at the same level of approximation
as the function itself. The expression that DAFs are always well tempered
refers to this property (Zhang et al., 1997a,b). These important features make
the DAFs a powerful tool in representing differential operators.

By discretizing the left hand side of (7) on the same spatial grid, one obtains

f (l)(xi) ≈
N∑
j=1

∆xδ(l)
M (xi − xj ;σ)f(xj). (8)

Obviously (8) can be written most conveniently in matrix/vector form, f(l) = Lf,
by identifying the components of the operator matrix L(xi, xj) = ∆xδ(l)

M (xi −
xj ;σ). Thus, an arbitrary differential operator of the form

L(x) = f(x)
∂

∂x
+ g(x)

∂2

∂x2
(9a)

has the Hermite-DAF matrix representation

L(xi, xj) = ∆xf(xi)δ
(1)
M (xi − xj ;σ) + ∆xg(xi)δ

(2)
M (xi − xj ;σ). (9b)

This is exactly the form of the Kolmogoroff -Backward operator. Analogously,
a forward operator can be defined by

L†(x) = − ∂

∂x
f(x) +

∂2

∂x2
g(x), (10a)

which has the matrix representation

L†(xi, xj) = −∆xf(xj)δ
(1)
M (xi − xj ;σ) + ∆xg(xj)δ

(2)
M (xi − xj ;σ). (10b)
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This is the structure of the Fokker-Planck operator. Notice that the subscript
of the argument in the functions f and g has turned from i into j, indicating
the differential operator acting now on f and g. The operator matrices (9b)
and (10b) can be computed most efficiently, because the differentiating DAF
matrices have Toeplitz -structure.

Remark: there are two approximations involved in computing the matrix
representation of the differential operator. First, the delta function is approx-
imated by an even Hermite-series with leading Gaussian term (2b), which is
sufficiently smooth everywhere. Second, the integral in (5) is evaluated by rect-
angular approximation (7). Discretizing the left hand side of equation (7) on the
same spatial grid results in a matrix/vector product with the general operator
matrix representation (9b) or (10b), respectively.

3. One-Dimensional Moment Filter

In this section the approximative moment filter in one dimension is derived.
This filter is the first step beyond the classical Kalman-Filter, with continuous
state and linear observation model, disturbed by Gaussian noise. The remaining
assumptions of linearity and normality are abandoned in the exact DAF-Filter,
derived in the next section.

Every filter algorithm has to perform three primary tasks: the time evolu-
tion of the probability density between observations, the incorporation of new
information due to observation, and the calculation of the likelihood contribu-
tion of each observation, in order to successfully conduct parameter estimation
via maximum-likelihood. Formally, these tasks can be summarized in their most
general form

p(xt|Ft−1) =
∫
p(xt|xt−1)p(xt−1|Ft−1)dxt−1 (11a)

p(xt|Ft) =
p(yt|xt,Ft−1)p(xt|Ft−1)

Lt
(11b)

Lt =
∫
p(yt|xt,Ft−1)p(xt|Ft−1)dxt. (11c)

Equation (11a) is the Chapman-Kolmogoroff equation with the Markov -kernel
p(xt|xt−1) and the σ-algebra Ft−1, generated by the observation process
y1, . . . , yt−1, (11b) is the Bayes-formula and (11c) the likelihood contribution
associated with the new observation yt. Generally, these quantities cannot be
evaluated analytically, except in rare cases, and have to be approximated. The
necessary steps are detailed below.

3.1. Time Evolution of Moments

Let x(t) be a standard Itô- or generalized Wiener -process with

dx(t) = f(x, t)dt+ g(x, t)dW (t), (12)
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where W (t) is a Brownian motion. Then the evolution of the corresponding
probability density is governed by the Fokker-Planck equation

∂

∂t
p(x, t) = − ∂

∂x
f(x, t)p(x, t) +

1
2
∂2

∂x2
g2(x, t)p(x, t)

= LFP (x, t)p(x, t),
(13a)

with the Fokker-Planck operator

LFP (x, t) = − ∂

∂x
f(x, t) +

1
2
∂2

∂x2
g2(x, t). (13b)

If the drift- and diffusion functions f and g are autonomous, which is assumed
in what follows, the Fokker-Planck operator does not depend on t explicitly, and
the solution can be written formally1

p(x, t+ ∆t) = eLFP (x)∆tp(x, t). (14)

Now the k-th moment is given by

Mk(t+ ∆t) =
∫
xkeLFP (x)∆tp(x, t)dx

=
∫ (

eL
†
FP (x)∆txk

)
p(x, t)dx,

(15a)

with the adjoined Fokker-Planck operator

L†FP (x) = f(x)
∂

∂x
+

1
2
g2(x)

∂2

∂x2
, (15b)

which is also known as Kolmogoroff -Backward operator. Expression (15a) can
be approximated most conveniently using the DAF formalism of section 2. Sup-
pose a discrete support, which covers p(x, t) and p(x, t+∆t) with an equispaced
grid x1, . . . , xN . Let ∆x = xi− xi−1 be the grid spacing for i = 2, . . . , N . Then
the k-th moment is approximately

Mk(t+ ∆t) ≈ ∆x
N∑
i=1

N∑
j=1

(
eL∆t

)
ij
xkj p(xi, t), (16a)

with the operator matrix

L(xi, xj) = ∆xf(xi)δ
(1)
M (xi − xj ;σ) +

∆x
2
g2(xi)δ

(2)
M (xi − xj ;σ). (16b)

Notice that (16a) contains a matrix-exponential. There are several methods to
calculate a matrix exponential (see Moler and van Loan, 2003, for an excellent

1If the Fokker-Planck operator is not autonomous, the time order of the infinitesimal
intervals has to be preserved. Formally this can be expressed with help of the Dyson time
ordering operator

p(x, t+ ∆t) =
←−
T exp

[∫ t+∆t

t

LFP (x, s)ds

]
p(x, t).
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treatment on this subject). To simplify further discussions, equation (16a) is
reformulated in vector/matrix form. Let p(t) be the column vector composed
of p(xi, t) for i = 1, . . . , N , L the operator matrix and xk the vector of the k-th
powers of x1, . . . , xN . Then the moment approximation reads

Mk(t+ ∆t) ≈ ∆xp′(t) exp[L∆t]xk, (17)

where p′ is the transposed vector of p. For numerical purposes it can be as-
sumed that L is not defective, which means that it has linearly independent
eigenvectors. However, problems occur, if L is nearly defective. This compli-
cation will be addressed in the next paragraph, for the moment it is assumed
that the eigenvalue decomposition of L can be calculated without numerical
problems. One obtains

exp[L∆t] = V exp[Λ∆t]V−1, (18)

where V−1 is the inverse matrix of V and Λ is the diagonal matrix of eigenvalues
of L and hence exp[Λ∆t]ij = eλi∆t, for i = j and 0 elsewhere. Therefore, the
moment approximation can be computed as

Mk(t+ ∆t) ≈ ∆xp′(t)V exp[Λ∆t]V−1xk. (19)

A more stable and efficient method to calculate the eigensystem of L is to
initially compute a Schur -Decomposition

LQ = QT, (20)

where T is an upper triangular matrix. Representation (20) was chosen to em-
phasize that no matrix inversion is involved. The next step is to calculate the
eigenvalue decomposition of T, which is particularly easy, because the eigenval-
ues are already available as diagonal elements of T, due to its upper triangular
structure. One obtains

LQR = QRΛ. (21)

By identifying terms, the desired matrix of eigenvectors can be calculated from
matrix multiplication V = QR. Furthermore, owing to the properties of the
Schur -Decomposition, the relation Q−1 = Q∗ holds, where Q∗ is the transposed
conjugate matrix to Q. Hence, the inverse V−1 can be calculated most efficiently
by solving the linear system RY = Q∗ for Y, and identifying Y = V−1.

The classical Kalman-Filter uses only the first two moments for time- and
observation update, because a Gaussian system is completely specified by these
quantities. The moments can be calculated easily from (19). To simplify no-
tation, assume that the observations are equispaced in time t0, . . . , tT with
∆t = ti− ti−1 for i = 1, . . . , T . This is not a necessary requirement, because the
Kalman-Filter can easily handle unbalanced designs. The time-update equa-
tions are

Φ′(ti,∆t) = ∆xp′(ti)V exp[Λ∆t]V−1 (22a)
µ(ti+1|ti) = Φ′(ti,∆t)x (22b)

Σ(ti+1|ti) = Φ′(ti,∆t)x2 − µ2. (22c)
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Notice that the eigensystem V exp[Λ∆t]V−1 has to be calculated only once and
not necessarily online, which makes the time update algorithm very efficient. If
the observation design is unbalanced, only the exponential diagonal matrix has
to be recomputed. However, if the underlying process is not stationary, or the
discrete grid, supporting initial- and prior density has to be recalculated for any
reason, the operator matrix, and hence its eigensystem, has to be recomputed
too. Thus, the algorithm is best suited for weak stationary processes.

3.2. Observation Update and Likelihood Contribution

In this first extension of the linear filter, the observation model remains linear
(or at least nearly linear so that Taylor -linearization applies). This assumption
will be dropped for the exact nonlinear filter derived in the next section. But
for now the observation equation is

yi = hx(ti) + εi, (23)

with observation yi at time ti and εi ∼ N(0, R). Thus, the ordinary Kalman-
Filter observation update is

Ki =
h

Γi
Σ(ti|ti−1) (24a)

µ(ti|ti) = µ(ti|ti−1) +Kiνi (24b)
Σ(ti|ti) = (1− hKi)Σ(ti|ti−1) (24c)

with the prediction error decomposition

νi = yi − hµ(ti|ti−1) (24d)

Γi = h2Σ(ti|ti−1) +R. (24e)

Remark: the conditional notation used here is incomplete. Because the state
estimates are conditioned on the σ-algebra generated by the observation pro-
cess, the quantities are conditioned on the whole history of observations. For
example, the conditional state expectation at i < t < i + 1 correctly reads
µ(t|ti, ti−1, . . . , t0). Since the Kalman-Filter is a recursive scheme, this depen-
dence evolves as natural consequence of its application. Hence, the simpler but
slightly abusive notation µ(t|ti) is used.

Because the posterior density is also Gaussian, the vector p(ti) in (22a)
contains the probability density at the quadrature points xi, with respect to a
Gaussian density with expectation µ(ti|ti) and variance Σ(ti|ti).

The log-likelihood contribution of the i-th observation results from the pre-
diction error decomposition theorem of Schweppe (1965). Using (24d) and (24e)
one obtains

li = −1
2

(
log[2πΓi] +

ν2
i

Γi

)
. (25)

The entire log-likelihood function is calculated as sum over all contributions li
for i = 0, . . . , T , after the filtering cycle is complete.
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The whole procedure is summarized in algorithm 1. The matrix exponential
of L should be computed by matrix decomposition methods (18) to (21). If not
suitable, other procedures like power series expansion or Padé-approximation,
not detailed in this paper, are available (see Moler and van Loan, 2003). Notice
that when an initial observation y0 is available, the recursion starts with the
observation update.

Algorithm 1: Approximative Moment Filter

Define a grid x1, . . . , xN and calculate L B Initialization
for i = 1, . . . , T do

Time update

Φ′(ti−1,∆t) = ∆xp′(ti−1) exp[L∆t]
µ(ti|ti−1) = Φ′(ti−1,∆t)x

Σ(ti|ti−1) = Φ′(ti−1,∆t)x2 − µ2

Observation update

Ki =
h

Γi
Σ(ti|ti−1) B Kalman-Gain

µ(ti|ti) = µ(ti|ti−1) +Kiνi

Σ(ti|ti) = (1− hKi)Σ(ti|ti−1)

Prediction error decomposition

νi = yi − hµ(ti|ti−1) B Innovation

Γi = h2Σ(ti|ti−1) +R

end for

4. Exact One-Dimensional DAF-Filter

In this section the exact DAF-Filter in one dimension is derived. This filter
overcomes the limits of the approximate moment filter in that the full prior
density is obtained within the time update step. Furthermore, restrictions of
the observation model are relaxed to full nonlinear, nonGaussian measurements.

In order to achieve these generalizations, the whole filter design has to be
located on a discrete grid. The grid x1, . . . , xN now supports prior-, observation-
and posterior densities. The prior density is obtained from an initial density, or
the previous posterior density, respectively, by the solution (14) of the Fokker-
Planck -equation. This formal solution is approximated by

p(xi, t+ ∆t) ≈
N∑
j=1

(
eL∆t

)
ij
p(xj , t), (26a)
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with the operator matrix

L(xi, xj) = −∆xf(xj)δ
(1)
M (xi − xj ;σ) +

∆x
2
g2(xj)δ

(2)
M (xi − xj ;σ). (26b)

Obviously, (26a) is a linear matrix/vector equation. The matrix exponential
should again be evaluated following the outlined procedures (18) to (21).

The observation model (23) in the previous section was a linear function of
the unobserved state, hx(ti), with an additional Gaussian error with variance
R. Hence, the observation density, conditioned on the unobserved state, could
have been written p(yi|x(ti)) = φ(yi;hx(ti), R), where φ is the normal density
function. In the exact filter setup it is is only required that the conditional
observation density is known. It neither has to be Gaussian, nor linear in the
system state argument. It not even has to be differentiable. If the conditional
observation density is known, the posterior density is obtained by evaluating the
Bayes-formula on the discrete grid x1 . . . , xN . Suppressing the time argument
to simplify notation one obtains

p(xi|y) =
p(y|xi)p(xi)

∆x
∑N

j=1 p(y|xj)p(xj)
. (27)

The denominator in (27) is the likelihood contribution of the observation y.
The observation update on a discrete grid degenerates to a reweighting process,
which is known from particle filtering.

Let p(ti|tj) be the column vector of state probability density on the discrete
grid x1, . . . , xN at time ti, conditioned on the information available at tj . Anal-
ogously, let p(yi|tj) be the column vector of observation density on the discrete
grid at time ti, conditioned on the system state density at time tj . Then algo-
rithm 2 summarizes the results. Again, if an initial observation y0 is available,
the recursion starts with the reweighting step.

Algorithm 2: Exact DAF-Filter

Define a grid x1, . . . , xN and calculate L B Initialization
for i = 1, . . . , T do

Time update

p(ti|ti−1) = exp[L∆t]p(ti−1|ti−1)

Reweighting

li = ∆xp′(yi|ti)p(ti|ti−1) B Likelihood

pj(ti|ti) =
pj(yi|ti)pj(ti|ti−1)

li

end for

The exact filter algorithm 2 is more compact than the approximate moment
filter algorithm 1. On the other hand, the discrete grid has to cover prior-,
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Figure 1: Phase transition in the GL-potential (left) and simulated trajectory (right)

observation- and posterior density, which requires a slightly larger discrete sup-
port. However, considering the fact that the operator matrix and its eigenvalue
decomposition has not to be computed in every step of the recursion, the exact
filter seems already more efficient.

5. Inference in a Bimodal Potential

To asses the performance of the derived DAF-Filters, the algorithms are tested
in a bimodal diffusion problem. First, the accuracy of the time update step
is investigated. Subsequently, maximum-likelihood inference is conducted with
both algorithms. This comparative analysis should not only asses the quality
of the filters, but should answer the generic question wether or not an exact
density filter is required to generate trustworthy parameter estimates.

5.1. The Ginzburg-Landau Model

The bimodal potential model of Ginzburg and Landau (1950) is a challenging
benchmark for nonlinear filters (cf. Miller et al., 1994; Singer, 2002, 2008), due
to its massive deviation from normality. It was originally designed to describe
phase transitions in superconductors. If the forth-order potential Φ(x) = α

2x
2 +

β
4x

4 passes through a transition from α > 0 to α < 0, a bifurcation occurs
and the stable system becomes bistable. Figure 1 left illustrates the phase
transition. A diffusion in the Ginzburg-Landau- (GL) potential is described by
the Itô-process

dx(t) = − ∂

∂x
Φ(x)dt+ g(x)dW (t)

= −(αx+ βx3)dt+ g(x)dW (t).
(28)

For fixed diffusion coefficient g(x) = g, the stationary probability density can be
calculated2, pst.(x) ∝ exp

[
− 2
g2 Φ(x)

]
. This allows for verification of the precision

2The normalization integral cannot be executed completely explicit, because its solution
contains modified Bessel-functions of the first kind. For β = g = 1 and α = −1, the exact
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of the DAF-Filter time update. In particular, for large ∆t, the moments should
coincide with the stationary moments of the GL-distribution. This is not a
trivial task, in which most established non-stochastic filtering schemes, like first
and second order extended Kalman-Filter and unscented Kalman-filter of Julier
and Uhlmann (1997, 2004), fail. For a detailed analysis see Mazzoni (2007,
chap. 4.10). Only filters based on Gauss-Hermite-Quadrature (for example Ito
and Xiong, 2000; Singer, 2008) seem to work properly.

In the following analysis the parameter configuration β = g = 1 and α =
−1 is chosen. Both, the approximate moment filter and the exact filter are
operated on a grid [x1, xN ] = [−3, 3] with ∆x = 0.1. Throughout the rest of
this paper, the Hermite-DAF parameters are chosenM = 54 and σ = 2.36∆x in
agreement with Zhang et al. (1997b)3. The initial density is assumed Gaussian,
with expectation µ = 0.5 and variance Σ = 0.25. The stochastic differential
equation (28) was simulated using an Euler-Maruyama-scheme (Kloeden and
Platen, 1992, chap. 9.1) with time discretization ∆τ = 0.01. Subsequently, an
observation series y0, . . . , yT with T = 100 and ∆t = 1 was generated from the
linear observation model (23) with h = 1 and Gaussian noise εi ∼ N(0, 0.1), in
order to make the two filters comparable.

Figure 1 right shows a small section of the simulated trajectory. Obviously,
the process bounces between the two potential floors at x = ±1 from time to
time, if its stochastic energy is sufficient to break through the potential barrier.
This property makes it very difficult for analytic filters to keep proper track of
the system state, whereas stochastic algorithms, like sequential Monte-Carlo fil-
ters, manage this task easily, if a sufficient number of particles is simulated. The
observations at integer times are indicated by dots. They are clearly dislocated
sometimes due to noisy measurement.

stationary probability density is given by

pst.(x) =
2

π
(
J−1/4

[
1
4

]
+ J1/4

[
1
4

])e− 1
2 (x4−2x2+ 1

2 ).

3For a detailed numerical analysis of preferable choices see Hoffman et al. (1991); Hoffman
and Kouri (1992); Wei et al. (1997); Zhang et al. (1997b).
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5.2. Accuracy of Time Updates

The moment evolution for the specified initial distribution is illustrated in fig-
ure 2 left for t = [0, 10]. Obviously, the moments relax rapidly to their stationary
values µ = 0 and Σ = 0.893. The absolute differences between the approximate
DAF-Filter solutions at t = 100 and the correct moments, calculated from the
stationary Ginzburg-Landau-distribution, are ∆µ = 0 and ∆Σ = 1.289× 10−7.
This is a fairly good result, because it is very accurate and it is obtained in a
one step calculation.

The exact density evolution is shown in figure 2 right. It is easily seen that
the unimodal initial density becomes bimodal, because the probability to break
through the potential barrier increases over time. With help of the stationary
distribution, a measure for the quality of the density evolution, similar to the
moment differences, can be established. Let ∆p be the vector of differences
between the stationary distribution and the exact filter solution on the discrete
grid x1, . . . , xN at t = 100. Then the root mean square error is ‖∆p‖/

√
N =

3.277 × 10−8. This is although a very accurate result which is obtained in one
single calculation step. The time update mechanism of the suggested filters
seems to work very precise and efficient.

5.3. Maximum-Likelihood Inference

To verify the ability of the suggested filters to generate suitable maximum-
likelihood parameter estimates, the known parameters α and β are estimated
from the simulated observation series. Figure 3 shows the log-likelihood surfaces
generated by the approximate moment filter (left) and the exact DAF-Filter
(right). There is a qualitative difference between the log-likelihood functions.
The surface generated by the approximate moment filter contains a rift, which
is not present in the likelihood surface of the exact filter. Remember that the
observation model is linear and Gaussian, and therefore exact, which means
that a moment filter generates a likelihood with wrong surface attributes. This
is true, even if the filter is able to track the moments of the underlying process
exactly.

Because the GL-process is ergodic, the asymptotical behavior of the ML-

Figure 3: Moment approximated- (left) and exact log-likelihood (right)
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T = 100 T = 1000 T = 10000
It. −α̂ β̂ It. −α̂ β̂ It. −α̂ β̂

Appr. 5 0.250 0.419 5 1.317 1.265 5 1.057 1.062
(0.749) (0.492) (0.365) (0.333) (0.116) (0.101)

Exact 5 1.123 1.079 5 1.165 1.116 4 0.912 0.945
(0.615) (0.509) (0.178) (0.148) (0.053) (0.043)

True – 1 1 – 1 1 – 1 1

Table 1: Maximum-Likelihood estimation of simulated observation series

estimates can be explored by simply extending the observation series. Table 1
reports the results of several estimation procedures with different numbers of
observations. A secant method, assembling an approximate Hesse-matrix with-
out calculating derivatives, was used for numerical maximization (cf. Dennis
and Schnabel, 1983, chap. 9). Figure 4 illustrates the maximization steps for
both filters with T = 100 observations in the relevant area of the likelihood sur-
face. The total number of iterations is indicated in the respective initial columns
in table 1. Asymptotic standard deviations, calculated from the Hesse-matrix
of the log-likelihood function, are given parenthesized below the corresponding
estimates.

Both algorithms seem to provide estimates, which cover the true parameter
value well within an interval of two standard deviations. However, in larger
samples the exact filter generates estimates with roughly half the variability of
the moment filter estimates. It is fair to say that the approximate moment filter,
despite of a wrong likelihood, is not totally insufficient for parameter estimation
in this problem.

Figure 4: ML-estimation – Approximative moment filter (left) and exact filter (right)
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6. Higher Dimensional DAF-Filter

In this section, the exact one-dimensional DAF-filter of section 4 is extended to
cover higher dimensional problems. This is done by switching to tensor notation.
The procedure is demonstrated in an instructive example.

6.1. Tensorial Eigenvalue Decomposition

The time update equation in algorithm 2 involved the computation of a matrix
exponential. This was done with help of a preceding eigenvalue decomposi-
tion. For higher dimensional forms, neither an exponential, nor an eigenvalue
decomposition is defined. But a higher dimensional problem of this kind can be
reduced to an ordinary matrix decomposition problem.

The following preliminaries are valid for arbitrary n-dimensional vector
spaces in which an inner product is defined4. Let yi be the elements of a con-
travariant vector, i.e. a vector with respect to an arbitrary basis, preferably an
orthonormal basis. Then xi are the components of a covector or covariant vec-
tor, which means a vector with respect to the corresponding dual basis. Roughly
spoken, a contravariant vector appears as column vector, whereas a covariant
vector appears as row vector. Now suppose y is the result of an operator L,
acting on a vector x. In tensor notation this is written as

yi = Lijx
j . (29)

In (29) Einsteins sum-convention was used. By this convention a summation
has to be performed, if the same index appears twice in one term. Indices are
not allowed to appear more than once in upper and lower position. In (29) the
sum of all components with index j of L and x has to be taken, which makes the
operation a simple matrix/vector product. Notice that each index runs over the
full number of dimensions i, j = 1, . . . , n. For the sake of simplicity, objects like
y and L are called tensors of rank one and two, respectively, without verifying
their transformation properties under a change of coordinates. Notice that (29)
is a componentwise notation, so the order in which the tensors are arranged is
arbitrary.

The eigenvalue decomposition of L can also be written in tensorial notation.
One obtains

yi = V ikΛlkVljx
j . (30)

Equation (30) needs some explanation. Even if Λ has diagonal structure, double
indexing is prohibited. The summation is therefore to be taken over k and l. The
expression Λkk would mean trace of Λ. The indices are positioned one above the
other to emphasize that Λ is symmetric. The matrix Vij is the inverse matrix of
V ij , which means V ijVjk = δik, with the identity matrix δik in tensor notation.
Generally, this property is only valid for the metric tensor. However, this is
consistent, because a certain kind of spectral metric is induced by V.

4See McCullagh (1987) for an excellent treatment of tensor methods in statistics.
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The original time update equation of algorithm 2 reads in tensorial notation

pi(t+ ∆t) = exp[L∆t]ijp
j(t)

= V ik exp
[
Λlk∆t

]
Vljp

j(t).
(31)

This equation can be extended to multivariate problems by index splitting. In
order to keep the notation simple, (31) is reformulated for the bivariate case

P i1i2(t+ ∆t) = V i1i2k1k2 exp[Λl1l2k1k2
∆t]Vl1l2j1j2P

j1j2(t). (32)

Now i1, . . . , l1 and i2, . . . , l2 have dimensions n1 and n2, respectively. P is a
tensor of rank 2, V and Λ are tensors of rank 4. They correspond to a rank 4
tensor Li1i2j1j2 in the following way: Define index functions I = n2(i1 − 1) + i2
for all indices i, j, k, l. Then

LIJ = V IKΛLKVLJ (33)

is the eigenvalue decomposition of the (n1n2×n1n2)-matrix LIJ . Equation (33)
relates the higher rank tensor expressions in (32) to a simple matrix decompo-
sition problem. The rank four tensors are literally flattened out into tensors
of rank two. This works for arbitrary d-variate problems by defining index
functions

I = 1 +
d∑

k=1

d−1∏
l=k

nl+1(ik − 1), (34)

for all indices involved. For computational purposes it is difficult to extend this
scheme beyond moderately d-variate problems, because the size of the matrices
involved in the eigenvalue decomposition grows exponentially.

6.2. Bivariate Diffusion example

In order to apply the concepts of the previous subsection, a very easy, but
instructive example is now introduced. First lets generalize the differentiating
DAF of section 2 to the bivariate case

∂k+l

∂xk∂yl
f(x, y) =

∫∫
δ(k)(x− x′)δ(l)(y − y′)f(x′, y′)dx′dy′

≈ ∆x∆y
Nx∑
i=1

Ny∑
j=1

δ
(k)
M (x− xi;σ)δ(l)

M (y − yj ;σ)f(xi, yj).
(35)

The corresponding bivariate Fokker-Planck -operator with x1 = x and x2 = y
reads

LFP (x1, x2) = −
2∑
i=1

∂

∂xi
fi(x1, x2) +

1
2

2∑
i=1

2∑
j=1

∂2

∂xi∂xj
gg′ij(x1, x2). (36)

An extension to higher variate problems is obvious.
A very simple, but instructive example is based on the geometrical Brownian

motion (GBB)
dy(t) = µydt+ γydW (t), (37)
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which is a popular model for stock asset prices in finance (e.g. Black and Sc-
holes, 1973). In its original form, the GBB is a univariate instationary process
and hence, two modifications are made. First, the model is transformed into the
corresponding return-process and second, the diffusion coefficient is made en-
dogenous as (extended) state variable without individual dynamics. The latter
is proposed in several approaches for online parameter estimation (for exam-
ple Mazzoni, 2009). Applying Itôs lemma to the relation x(t) = log[y(t)] and
extending the state space yields

d

(
x(t)
γ(t)

)
=

(
µ− γ2

2

0

)
dt+

(
γ

0

)
dW (t). (38)

The second components of drift and diffusion function f and g are identically
zero. If the constant expected return is also set to zero, µ = 0, the corresponding
Fokker-Planck -operator has a particularly simple form

LFP (x, γ) =
γ2

2

(
∂

∂x
+

∂2

∂x2

)
. (39)

Defining a two dimensional discrete grid x1, . . . , xNx and γ1, . . . , γNγ , with grid
spacing ∆x and ∆γ, respectively, the Fokker-Planck -operator (39) has a rank
four tensor representation

L(xi, γi, xj , γj) = ∆x∆γδγiγj
γ2
i

2

(
δ

(1)
M (xi − xj ;σ) + δ

(2)
M (xi − xj ;σ)

)
. (40)

The Kronecker -Delta results from the differentiating DAF of degree zero
δ

(0)
M (γi − γj ;σ) = δγiγj , according to (35). The rank four operator tensor (40)
is related to the matrix eigenvalue decomposition (33) by the appropriate index
functions (34), and hence to the time update equation (32).

In the present example the cartesian grid [−5, 5]2 was chosen, with grid
spacing ∆x = ∆γ = 0.25. A linear observation model

yi = x(ti) + εi, (41)

with εi ∼ N(0, 0.25) was used, where only the returns x(t) were observed. This
is a typical situation in financial applications because the volatility is assumed
an unobserved latent quantity. Now algorithm 2 applies with minor obvious
modifications. Figure 5 gives a sequence of three succeeding measurements. In
all cases, the prior density is indicated by the left contour plot, the observation
density at the center and the posterior to the right.

The initial density is Gaussian, and remains Gaussian throughout the ini-
tial measurement. But the first time update causes a symmetry breaking
with respect to the x-component (center-left in figure 5). Notice that the γ-
symmetry remains intact at all times because the Fokker-Planck -operator (39)
contains only terms quadratic in γ. This x-asymmetry is amplified by sub-
sequent measurements and finally the probability density becomes completely
bimodal (bottom-right in figure 5).

The symmetry in γ is the reason for the incapability of Gaussain filters to
track unobserved volatility. It is easy to see that the linear correlation and hence
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Figure 5: Bivariate diffusion – Prior-, observation- and posterior density

the covariance between x and γ is zero. Therefore, no information about γ is
obtained by observing x, if the information is processed only by the covariance
matrix. This problem can only be fixed by filters, involving higher moments,
and therefore nonlinear correlations, or by approximately exact density filters
like the DAF-filter.

7. Stochastic Limit Cycle Model

In this section a stochastic version of the Van der Pol -oscillator is investigated.
This problem is more elaborate because it contains a limit cycle. Furthermore,
it is analyzed within a highly nonlinear observation model in order to test the
suggested method under most adverse conditions.

The Van der Pol -oscillator is a popular benchmark for nonlinear filtering
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schemes (e.g. Sitz et al., 2002; Mazzoni, 2008). It is also an example for a very
stiff set of nonlinear ODEs (see the famos STIFF-DETEST set, introduced by
Enright et al., 1975). Thus, it is often used to verify the quality of numerical
computations (Hairer and Wanner, 1996, chap. 4.10). The original second order
oscillator equation reads

ẍ− ε(1− x2)ẋ+ x = 0, (42)

with ε > 0 and dots indicating derivatives with respect to time. Without de-
tailed analysis, some properties of the Van der Pol -equation are summarized.
When x is small, the quadratic term x2 can be neglected and the system (42)
becomes repulsive to the origin, due to a negative dampening term −εẋ. For
large x, the quadratic term becomes dominant and the origin now acts as at-
tractor. Hence, the system can be expected to remain in a certain area around
the origin. Actually it satisfies Liénards theorem, guaranteeing the existence of
a stable limit cycle in phase space.

For the present analysis, the oscillator is decomposed into its phase com-
ponents with the substitution ẋ = v, and augmented by a state independent
stochastic inhomogeneity. The resulting bivariate SDE reads

d

(
x(t)
v(t)

)
=

(
v

ε(1− x2)v − x

)
dt+

(
0
g

)
dW (t). (43)

Further, assuming that only the radial distance of the phase state with respect
to the origin can be observed and that the measurement is affected by noise,
the higly nonlinear observation model is

yi =
√
x2(ti) + v2(ti) + εi. (44)

In the present setup the parameter vector (ε, g) = (0.5, 1) is chosen and the
measurement error is assumed εi ∼ N(0, 0.25). Figure 6 left shows a streaming
plot of the phase space and a simulated trajectory of the SDE (43) for t =
[0, 20]. The initial distribution is Gaussian with µ = 0 and Σ = I. The initial
state is indicated by an empty triangle, whereas the final state is marked by a
filled triangle. The simulation of the stochastic differential equation was again
conducted with an Euler-Maruyama-scheme with time discretization ∆τ = 0.01.

Figure 6 right gives a density plot of the nonlinear observation density for a
hypothetical observation y = 2 in the phase space. It clearly indicates that local
linearization techniques are inadequate for this kind of problem. Altogether,
(43) and (44) represents a state space model, which is very difficult to process
by conventional filters, especially by filters based on local linearizations. On the
other hand, the DAF-filter can easily handle this problem.

Figure 7 shows the first 12 posterior densities calculated by the DAF-filter,
with observations at all integer times ti with i = 0, . . . , 20. Again a cartesian
grid of [−5, 5]2, with grid spacing ∆x = ∆v = 0.25 was used. Because the phase
state position cannot be observed directly, the probability mass is distributed
orbital around the origin. Some areas on this orbit are more likely than others
at different times, because the limit cycle is not quite circular as seen from figure
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Figure 6: Simulated Van-der-Pol -trajectory (left) and observation density (right)

6 left. But because the observation is disturbed by noise, no position on the
orbit can be ruled out completely in the posterior distribution.

Notice that the orbital distribution of probability mass is symmetric with
respect to the origin. This means that a calculation of the posterior expecta-
tion yields E[x] = E[v] = 0 for all times. Because x = v = 0 is an instable
equilibrium, the probability of finding the system in the vicinity of this state is
zero. Thus, the posterior expectation is a very poor indicator for the system
state and moment based filters are doomed to fail. The DAF-filter on the other
hand draws a very clear and precise picture of the true local conditions.

8. Conclusions

Two new continuous-discrete filtering schemes, based on matrix representation
of the Fokker-Planck -operator with distributed approximating functionals, were
introduced. It has been shown that these filters are capable of high precision
time evolution of the Fokker-Planck -equation in one step, once an adequate
discrete grid is established and the corresponding operator matrix and its eigen-
value decomposition is calculated. These matrices can be computed offline, and
once available, the time update reduces to a simple matrix/vector multiplica-
tion.

The potential of the method was surveyed in univariate and bivariate ex-
amples. Particularly difficult benchmark problems have been addressed and the
DAF-Filter has proven capable of handling nonlinearities of every kind. Further-
more, the adequacy with respect to maximum-likelihood parameter estimation
was investigated, which is the weak spot of most sequential Monte-Carlo-filters.
Even in this regard, the DAF-Filter has proven useful and efficient.

A general problem of filters, designed to work on a discrete grid, is their
extension to multivariate problems. The DAF-Filter also suffers from this draw-
back. Even in the bivariate case, the operator matrix becomes very high dimen-
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Figure 7: Posterior densities of the limit cycle oscillator

sional. Hence, at this time the method seems to be restricted to moderately
high k-variate problems. Here is potential for future research. Another incon-
venience is caused by the necessity of recalculation of the operator matrix, once
the supporting discrete grid is changed. Recomputation seems unavoidable if
the grid support is no longer sufficient. These kinds of defects generally oc-
cur in nonstationary problems or in case of observation outliers. They can be
fixed by transforming the model to a stationary type or by broaden the discrete
support. In the context of ML-estimation, the recalculation of the operator
matrix is absolutely unavoidable, even if the grid support is sufficient and the
grid is unaltered. But this is considered a minor inconvenience by the author,
because non differentiable likelihood surfaces, like usually generated by sequen-
tial Monte-Carlo-filters, are causing far more serious problems in parameter
estimation.
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