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Abstract. John H. Conway presents in his book “On Numbers and
Games” [ONAG] a general method to create a class of numbers contain-
ing all real numbers as well as every ordinal number. Using the logical
law of excluded middle (LEM) he equips this class with the structure of a
totally ordered field. This paper is a first step to investigate the contribu-
tion of Conway’s theory to the foundations of Constructive Nonstandard
Analysis. In [ONAG] Conway suggests defining real numbers as (Conway)
cuts in the set of rational numbers. Following his ideas, a constructive
notion of real numbers will be developed.
A constructive approach to ordinal numbers which is compatible with
constructive Conway theory is presented.
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Introduction

In his book “On Numbers and Games” ([ONAG]=[11]) John Horton Conway
develops a very general theory of numbers and games, frequently using the
logical law of excluded middle (LEM). This paper aims to start a constructive
investigation of this theory. Following the ideas of Conway, constructive notions
for Conway games and Conway numbers will be developed and a constructive
version of Conway’s theory will be given. We shall mark any application of
(LEM), constructively rejected omniscience or choice principles are avoided.
Whether the author’s aim to avoid even countable choice has been achieved
may be judged by mathematicians with more experience in working without
choice. (Fred Richman suggested to drop countable choice in his talk at the
Symposion “Reuniting the Antipodes”, cf. [1]; cf. also [23] and [25].)

Conway games are defined in Section 1 and operations of addition and sub-
traction for such games are presented in Section 2 resp. 3. The relations of
order and equality are shown to have the expected properties in Sections 4–5.
Conway numbers are dealt with in Section 6, and real Conway numbers are the
topic of Section 7.

∗ Mathematics Subject Classification 2000. 03F65 (03F15, 03H15, 91A05)
∗∗ The author presented the ideas of this paper for the first time at the Symposion “Re-

uniting the Antipodes” in May 1999 at Venice International University, cf. [1]. His participa-
tion has been supported by Volkswagen foundation Hannover and by FernUniversität Hagen.
(First version July 1999, intermediate versions February, April and July 2000, final version
October 2000.)
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Constructive background material about ordinal numbers, their order and
addition is sketched in Appendix A resp. B.

Zeroth Part
On Games . . .

1 Conway games

1.1 Motivation Conway games are played by two players (usually called
Left and Right) moving alternately according to specific rules without chance
moves and without hidden information. Such a game is characterized by the
positions each of the two players can reach from any position with the next
move. Thus, a Conway game x will be described by two sets Lx and Rx, the
sets of Left resp. Right options (i. e. positions reachable by Left resp. Right from
the starting position of x within one move). As every position P in a game x
can be identified with the shortened game xP (which is played according to the
rules of x starting from position P ) the sets Lx and Rx will be identified with
sets of Conway games. Vice versa, whenever L and R are sets of Conway games,
we can construct a new Conway game {L|R}, in which Left may move to any
element of L whereas Right may move to any element of R. Having this in mind
the following definition can be given.

1.2 Definition (Conway games)
For every set X let Γ(X) := P(X) × P(X) be the set of pairs of subsets of X.
Define G0:= Γ(∅), G1 := Γ(G0), G2 := Γ(G1), . . .

Gω:= Γ
( ∞⋃
k=0

Gk

)
, Gω+1 := Γ(Gω), etc.

i. e. define Gα+1 := Γ(Gα) for every ordinal α, and for any lim-ordinal λ define
Gλ := Γ (

⋃
{Gα : α contained in λ }). (Containment is introduced in A.3 of

Appendix A, where a constructive notion of ordinal numbers is presented.)
Then Ugj :=

⋃
{Gα : α ∈ Onj } may be called j-th (Conway) game class

(j ∈ N0), and elements of the set Ug? :=
⋃
{Gα : α ∈ On? } =

⋃∞
j=0 Ugj

are (Conway) games. (Conway took the name Ug to denote his proper class
of all “unimpartial” games, i. e. games possibly favouring one of the players,
cf. [ONAG]=[11] p. 78. The sets Onj and On? are defined in A.2 resp. A.7.)

1.3 Notation (Left/Right Options)
With the projections prL : Ug? −→ Ug?, (L,R) 7−→ L and prR : Ug? −→ Ug?,
(L,R) 7−→R we obtain two sets of games for every game x ∈ Ug?: Lx := prL(x),
the set of Left options in x, and Rx := prR(x), the set of Right options in x.
Two games are called identical if their sets of Left options and their sets of Right
options coincide: x ≡ y :⇐⇒ Lx = Ly and Rx = Ry (x and y have the same
form). If x ≡ (Lx,Rx) is a game, xL will be a typical element of Lx (typical Left
option) and xR will be a typical element of Rx (typical Right option).
{x1, . . . , xn|y1, . . . , ym} will abbreviate ({x1, . . . , xn}, {y1, . . . , ym}); instead of
y ≡ ({z} , ∅) we will write y ≡ {z|} etc. Sometimes the expression

{
xL

∣∣xR
}

will
be used as notation for the game x.
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1.4 Examples (The four simplest games)
(1) ⊥ ≡ {|} ≡ (∅, ∅), the empty game, in which both players are unable to move,
is the only element of Ug0.
The following games are elements of Ug1:
(2) 1L ≡ {⊥|} ≡ ({⊥} , ∅), the Left unit game, in which Left has a move to ⊥
while Right is unable to move;
(3) 1R ≡ {|⊥} ≡ (∅, {⊥}), the Right unit game, in which Right has a move to
⊥ while Left is unable to move;
(4) ∗ ≡ {⊥|⊥} ≡ ({⊥} , {⊥}), the Nim unit game, in which both players have a
move to ⊥. (The game Nim is described in [4].)

1.5 Convention (Normal play convention)
A player unable to move loses, the other player is the winner.
(Because of the Descending Chain Condition in A.3, no game can go on forever.)

1.6 Definition (Outcome classes)
For any x ∈ Ug? define (a game theoretic interpretation is given in 1.7)
x ≥ 0 :⇐⇒ ∀xR ∈ Rx : xR � 0 (Left can win if Right starts),
x B 0 :⇐⇒ ∃xL ∈ Lx : xL ≥ 0 (Left can win if Left starts),
x ≤ 0 :⇐⇒ ∀xL ∈ Lx : xL � 0 (Right can win if Left starts),
x C 0 :⇐⇒ ∃xR ∈ Rx : xR ≤ 0 (Right can win if Right starts),
x > 0 :⇐⇒ x ≥ 0 and x� 0 (x is positive, Left can win),
x < 0 :⇐⇒ x ≤ 0 and x� 0 (x is negative, Right can win),
x ‖ 0 :⇐⇒ x� 0 and x� 0 (x is fuzzy, the first player can win),
x = 0 :⇐⇒ x ≥ 0 and x ≤ 0 (x is zero, the second player can win).

(Here ‘can win’ stands for ‘has a winning strategy’. Relying on this intuitive
concept, some readers may prefer to define the outcome classes by the express-
sions in parentheses. They can arrive at the formal definition given here by
considering remark 1.7. Other readers may use the formal definitions given here
to make precise the concept of winning strategy using remark 1.7.)

1.7 Remark Left can win x in case Right moves first (i. e. x ≥ 0) if all possible
Right moves lead to games which Left can win, provided Left is allowed to make
the first move there. Left can win x in case Left moves first (i. e. x B 0) if there
is a Left (winning) move leading to a game which Left can win, provided Right
has to move first there. The outcome classes in favour of Right (x ≤ 0 and
x C 0) can be interpreted similarly.

1.8 Examples Here are the outcome classes for the games from 1.4:
(1) ⊥ = 0 , as both players are unable to move in ⊥;
(2) 1L > 0 , as Left wins (by moving to ⊥ or since Right has no move);
(3) 1R < 0 , as Right wins (by moving to ⊥ or since Left has no move);
(4) ∗ ‖ 0 , as the first player wins by moving to ⊥.

1.9 Proposition
(1) For all games x ∈ Ug? we have

(i) ¬(x ≥ 0 and x C 0),
(ii) ¬(x ≤ 0 and x B 0).

(2) The logical law of excluded middle,
(LEM) ψ or ¬ψ for every proposition ψ,

is equivalent to each of the following statements:
(a) x ≥ 0 or x C 0 for all x ∈ Ug?,
(b) x ≤ 0 or x B 0 for all x ∈ Ug?.
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Proof:
(1): The proofs of (i) and (ii) are carried out by mutual game induction, i. e. by
game induction (transfinite induction on α ∈ On?, x ∈ Gα) for the conjunction
of (i) and (ii); the induction basis will not be mentioned as there are no options
of {|}, the only element of G0 = Γ(∅).
Ind. Step: (i) Suppose we have x ≥ 0 and x C 0, hence xR B 0 for all
xR ∈ Rx and xR ≤ 0 for some xR ∈ Rx; but xR B 0 and xR ≤ 0 would
contradict Ind.Hyp. (ii).
(ii) x ≤ 0 and x B 0 would yield analogously a contradiction to Ind. Hyp. (i).
(2): “(LEM) =⇒ (a),(b)” is also proved by mutual game induction:
Since ¬(x C 0) =⇒ ¬(∃xR ∈ Rx : xR ≤ 0) =⇒ ∀xR ∈ Rx : ¬(xR ≤ 0) =⇒
∀xR ∈ Rx : xR B 0 [by Ind. Hyp. (b)] =⇒ x ≥ 0, we can deduce (a) from (LEM)
via (x C 0 or ¬(x C 0) ); (b) is deduced similarly from (LEM) and Ind.Hyp. (a).
“(a) =⇒ (LEM)”:
Let xψ ≡ (∅, {x ∈ {⊥} : ψ }) ∈ Ug?. Then with Rψ := {x ∈ {⊥} : ψ } we have
xψ ≥ 0 ⇐⇒ ∀ y ∈ Rψ : y B 0 ⇐⇒ ⊥ /∈ {x ∈ {⊥} : ψ } ⇐⇒ ¬ψ and
xψ C 0 ⇐⇒ ∃ y ∈ Rψ : y ≤ 0 ⇐⇒ ⊥ ∈ {x ∈ {⊥} : ψ } ⇐⇒ ψ.

“(b) =⇒ (LEM)” is proved analogously. �

2 Addition

2.1 Motivation Two games x, y ∈ Ug? can be played simultaneously by the
simultaneous play rule: The player to move may choose from the allowed moves
in exactly one of the components x or y leaving the other component unchanged.
This leads to the following inductive definition of the sum x+ y of two games.

2.2 Definition (Addition)
For games x, y ∈ Ug? their (disjunctive) sum is given by x+ y ≡ (Lx+y,Rx+y)
with Lx+y := (Lx + y) ∪ (x + Ly) =

{
xL + y : xL ∈ Lx

}
∪

{
x+ yL : yL ∈ Ly

}
and Rx+y := (Rx+ y)∪ (x+Ry) =

{
xR + y : xR ∈ Rx

}
∪

{
x+ yR : yR ∈ Ry

}
.

Or, using a more condensed notation, x+y ≡
{
xL + y, x+ yL

∣∣xR + y, x+ yR
}
.

2.3 Remark For all α, β ∈ Onj , j ∈ N0, there is γ ∈ Onj with x+ y ∈ Gγ for
all x ∈ Gα and y ∈ Gβ . The function addUg?

: Ug?×Ug?−→Ug?, (x, y) 7−→x+y
satisfies addUg?

(x, y) ∈ Ugj whenever x, y ∈ Ugj , j ∈ N0.

2.4 Examples
(1) ⊥+⊥ ≡ {|}+ {|} ≡ {|} ≡ ⊥;
(2) 1L +⊥ ≡ {⊥|}+ {|} ≡ {⊥+⊥|} ≡ 1L by (1);
(3) ⊥+ 1R≡ 1R can be seen similarly;
(4) 1L + 1R≡ {⊥+ 1R|1L +⊥} ≡ {1R|1L} by (2) and (3).

2.5 Proposition (Ug? monoid)
Ug? is a commutative monoid with neutral element ⊥ ≡ {|}:
For all games x, y, z ∈ Ug? we have
(1) x+⊥≡ x,
(2) x+ y≡ y + x,
(3) (x+ y) + z≡ x+ (y + z).
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Proof: The proofs are carried out by ordinary game inductions:
(1) : x+⊥≡

{
xL +⊥

∣∣xR +⊥
}
≡

{
xL

∣∣xR
}

[Ind. Hyp.] ≡ x.
(2) : y + x≡

{
yL + x, y + xL

∣∣yR + x, y + xR
}

≡
{
x+ yL, xL + y

∣∣x+ yR, xR + y
}

[Ind.Hyp.] ≡ x+ y.
(3) : (x+ y) + z≡

{
(xL + y) + z, (x+ yL) + z, (x+ y) + zL

∣∣. . .}
≡

{
xL + (y + z), x+ (yL + z), x+ (y + zL)

∣∣. . .} [Ind.Hyp.]
≡ x+ (y + z). �

2.6 Lemma (Outcome classes and addition)
For all games x, y ∈ Ug? the following statements hold.
(1) x ≥ 0 and y ≥ 0 =⇒ x+ y ≥ 0,
(2) x ≥ 0 and y B 0 =⇒ x+ y B 0,
(3) x+ y ≥ 0 and y ≤ 0 =⇒ x ≥ 0,
(4) x+ y ≥ 0 and y C 0 =⇒ x B 0,
(5) x+ y B 0 and y ≤ 0 =⇒ x B 0.

(A game theoretic interpretation of some of these implications is given in 2.7.)

Proof:
(1) and (2) are mutually proved by a straightforward game induction.

(3), (4) and (5) are also proved by mutual game induction (cf. 1.9):
(3) : x+ y ≥ 0 =⇒ ∀xR ∈ Rx : xR + y B 0

=⇒ ∀xR ∈ Rx : xR B 0 [by Ind. Hyp. (5)].
(4) : x+ y ≥ 0 =⇒ ∀ yR ∈ Ry : x+ yR B 0

=⇒ x B 0 [by Ind. Hyp. (5)],
because y C 0 =⇒ ∃ yR ∈ Ry : yR ≤ 0.

(5) : x+ y B 0 =⇒ ∃xL ∈ Lx : xL + y ≥ 0 or ∃ yL ∈ Ly : x+ yL ≥ 0;
first case: ∃xL ∈ Lx : xL + y ≥ 0 =⇒ ∃xL ∈ Lx : xL ≥ 0 [by Ind. Hyp. (3)];
second case: ∃ yL ∈ Ly : x+ yL ≥ 0 =⇒ x B 0 [by Ind.Hyp. (4)],

because y ≤ 0 =⇒ ∀ yL ∈ Ly : yL C 0. �

2.7 Interpretation
The first implication of 2.6 asserts that Left can win the sum if Right starts,
provided Left can win each component. Indeed, Left can find a good reply to
any move of Right because there is a good reply in any component, thus Left
will win by choosing always the same component as Right and playing a winning
move there.
The second implication of 2.6 means that Left having the first move can win
the sum x+ y, provided Left can win one component x with Right moving first
and the other component y having the first move. Indeed, Left may start with
a move from x+ y to x+ yL ≥ 0 choosing a winning move yL ≥ 0 in y.
The third implication of 2.6 says that Left can win a game x if Right starts,
provided Left can win a sum x+ y if Right starts, where y is a game which can
be won by Right having the second move. Indeed, Right may choose to move
in x and, as y ≤ 0, every reply of Left in y can be countered by Right with a
good move. Thus, Left can win the sum x+ y only by finding a winning move
in the game x.
The remaining implications of 2.6 can be interpreted in an analogous manner.
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3 Subtraction

3.1 Motivation The antigame −x is played like the original game x in which
the roles of Left and Right have been interchanged: The allowed moves for Left
in −x correspond to the Right moves in x and the allowed moves for Right in
−x correspond to the Left moves in x, where the roles have to be interchanged
in the options too. The following definition formalizes this idea.

3.2 Definition (Subtraction)
For every game x ∈ Ug? its antigame is given by −x ≡ (L−x,R−x) with
L−x := −Rx =

{
−xR : xR ∈ Rx

}
and R−x := −Lx =

{
−xL : xL ∈ Lx

}
.

Or, using a more condensed notation, −x ≡
{
−xR

∣∣−xL
}
.

The difference of x, y ∈ Ug? is defined to be
x− y ≡ x+ (−y) ≡

{
xL − y, x− yR

∣∣xR − y, x− yL
}
.

3.3 Remark
We have −x ∈ Ugj whenever x ∈ Ugj , j ∈ N0, so using addUg?

from 2.3
we obtain a function subUg?

: Ug? × Ug? −→ Ug?, (x, y) 7−→ x − y satisfying
subUg?

(x, y) ∈ Ugj whenever x, y ∈ Ugj , j ∈ N0.

3.4 Examples
(1) −⊥≡ −{|} ≡ {|} ≡ ⊥;
(2) −1L≡ −{⊥|} ≡ {|−⊥} ≡ 1R by (1);
(3) −∗≡ −{⊥|⊥} ≡ {−⊥|−⊥} ≡ ∗ by (1);
(4) 1L − 1L≡ 1L + 1R ≡ {1R|1L} by (2) and 2.4 (4).

3.5 Note For all games x ∈ Ug? we have
(1) x≤ 0 ⇐⇒ −x≥ 0,
(2) xC 0 ⇐⇒ −xB 0,
(3) x< 0 ⇐⇒ −x> 0.

((1) and (2) are proved by mutual game induction, then (3) follows.)

3.6 Proposition
For all games x, y ∈ Ug? the following statements hold.
(1) −(−x)≡ x,
(2) −(x+ y)≡ (−x) + (−y),
(3) −(x− y)≡ y − x,
(4) x− x= 0.

(Example 3.4 (4) shows that (4) cannot be replaced by x− x ≡ ⊥.)

Proof:
The proofs of (1) and (2) are carried out by ordinary game inductions:
(1) −(−x) ≡ −

{
−xR

∣∣−xL
}
≡

{
−(−xL)

∣∣−(−xR)
}

[Ind. Hyp.] ≡ x .
(2) −(x+ y) ≡

{
−(xR + y),−(x+ yR)

∣∣−(xL + y),−(x+ yL)
}

≡
{
(−xR) + (−y), (−x) + (−yR)

∣∣(−xL) + (−y), (−x) + (−yL)
}

[Ind. Hyp.]
≡ (−x) + (−y).

(3) is a consequence of (1), (2) and 2.5 (2).
(4): We prove x− x ≤ 0. (This together with (3) and 3.5 (1) yields x− x ≥ 0.)
Because of xL − xL ≤ 0 [Ind. Hyp.] we have xL − x C 0 for all xL ∈ Lx, and
because of xR − xR ≤ 0 [Ind.Hyp.] we have x− xR C 0 for all xR ∈ Rx. Hence
(x− x)L C 0 holds for all (x− x)L ∈ Lx−x, i. e. x− x ≤ 0. �
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4 Order

4.1 Definition (Order)
For games x, y ∈ Ug? define
x ≥ y :⇐⇒ x− y ≥ 0 (x is at least as favourable for Left as y),
x ≤ y :⇐⇒ x− y ≤ 0 (x is at most as favourable for Left as y),
x B y :⇐⇒ x− y B 0 (x is partly more favourable for Left than y),
x C y :⇐⇒ x− y C 0 (x is partly less favourable for Left than y),
x > y :⇐⇒ x− y > 0 (x is more favourable for Left than y),
x < y :⇐⇒ x− y < 0 (x is less favourable for Left than y),
x = y :⇐⇒ x− y = 0 (x and y are equally favourable for Left),
x ‖ y :⇐⇒ x− y ‖ 0 (x and y are incompatible).

4.2 Hint For all games x, y ∈ Ug? we have
(1) x ≤ y ⇐⇒ y ≥ x ⇐⇒ −x ≥ −y,
(2) x C y ⇐⇒ y B x ⇐⇒ −x B −y,
(3) x < y ⇐⇒ y > x ⇐⇒ −x > −y.

(The proofs are straightforward with 3.5 and 3.6.)

4.3 Lemma (Characterization of order)
For all games x, y ∈ Ug? the following statements hold.
(1) x ≤ y ⇐⇒ ∀xL ∈ Lx : xL C y and ∀ yR ∈ Ry : x C yR,
(2) x C y ⇐⇒ ∃xR ∈ Rx : xR ≤ y or ∃ yL ∈ Ly : x ≤ yL,

(3) x > y ⇐⇒ x ≥ y and x B y,
(4) x = y ⇐⇒ x ≥ y and y ≥ x,
(5) x ‖ y ⇐⇒ x B y and y B x.

Proof:
(1): x ≤ y ⇐⇒ ∀ (x− y)L ∈ Lx−y : (x− y)L C 0

⇐⇒ ∀xL ∈ Lx : xL − y C 0 and ∀ yR ∈ Ry : x− yR C 0.
(2) is proved similarly, while (3), (4) and (5) are plain. �

4.4 Note (Properties of order)
For all games x, y, z ∈ Ug? the following statements hold.
(1) x ≥ x,
(2) x ≥ y and y ≥ z =⇒ x ≥ z,
(3) x ≥ y and y B z =⇒ x B z,
(4) x ≥ y ⇐⇒ x+ z ≥ y + z,
(5) x B y ⇐⇒ x+ z B y + z,
(6) xL C x and x C xR whenever xL ∈ Lx, xR ∈ Rx.

(For (1) and (6) use 3.6 (4), for (2), (3), (4) and (5) use 2.6.)

4.5 Remark (Properties of strict order)
For all games x, y, z ∈ Ug? we have
(1) ¬(x > x),
(2) x > y =⇒ ¬(y > x),
(3) x > y and y > z =⇒ x > z,
(4) x > y ⇐⇒ x+ z > y + z.

((1) and (2) are proved with 1.9 (1), while (3) and (4) are consequences of 4.4.)

4.6 Result ≥ is a preorder relation (reflexive and transitive) on Ug? with
associated equivalence relation =, and> is a strict partial order relation on Ug?.
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5 Equality

5.1 Note The equivalence relation = (cf. 4.1 and 4.6) is invariant with respect
to translations and reflections, that is to say that for all x, y, z ∈ Ug? we have
(1) x = y =⇒ x+ z = y + z,
(2) x = y =⇒ −x = −y.

(The proofs are straightforward with 4.3 (4), 4.4 and 3.5.)

5.2 Observation Addition and subtraction preserve equality, and ≥, B, >
as well as ‖ allow substitution of equals, viz. for all x1, x2, y1, y2, x, y, z ∈ Ug?
the following statements hold.
(1) x1 = x2 and y1 = y2 =⇒ x1 + y1 = x2 + y2,
(2) x1 = x2 and y1 = y2 =⇒ x1 − y1 = x2 − y2,

(3) x = y and y % z =⇒ x % z whenever % ∈ {≥,B, >, ‖} ,
(4) x % y and y = z =⇒ x % z whenever % ∈ {≥,B, >, ‖} .

((1) and (2) are consequences of 5.1, the proofs of (3) and (4) for ≥ and B are
plain with 4.4, then (3) and (4) for > and ‖ follow.)

5.3 Result Ug? (i. e. Ug? modulo =) is a partially ordered group.
(Here bold print symbolizes the employment of = as equivalence relation.)

5.4 Lemma
Let x, y ∈ Ug? be games and let L′, R′ ⊆ Gα be sets of games, α ∈ On?. Then
(1) (Lx ∪ L′,Rx) = x, if L′ C x (i. e. if x′ C x for all x′ ∈ L′);
(2) (Ly,Ry ∪R′) = y, if y C R′ (i. e. if y C y′ for all y′ ∈ R′);
(3) (Lx ∪ L′,Rx ∪R′) = x, if L′ C x C R′

(i. e. if x′ C x C y′ for all x′ ∈ L′, y′ ∈ R′).

Proof:
In (1) let x̃ ≡ (Lx ∪ L′,Rx) and prove x̃ ≤ x: We have L′ C x by assumption
and Lx C x by 4.4 (6), hence Lx̃ = (Lx ∪L′) C x. Moreover, by 4.4 (6), we have
x̃ C Rx̃ = Rx. (x ≤ x̃ is proved similarly.)
For (2) apply (1) with x = −y and L′ = −R′, for (3) apply (1) and (2). �

5.5 Notation
For every subset A ⊆ X of any set X with preorder ≤ we call

↑A := {x ∈ X : ∃ a ∈ A : a ≤ x } the upwards closure of A,
↓A := {x ∈ X : ∃ a ∈ A : x ≤ a } the downwards closure of A.

5.6 Hint ↑ and ↓ are closure operators:
(1) A ⊆ ↑A and A ⊆ ↓A,
(2) ↑↑A = ↑A and ↓↓A = ↓A,
(3) A ⊆ B =⇒ ↑A ⊆ ↑B and ↓A ⊆ ↓B,
(4) (A ⊆ ↑B ⇐⇒ ↑A ⊆ ↑B) and (A ⊆ ↓B ⇐⇒ ↓A ⊆ ↓B).

(The proofs are plain; closure spaces are presented in [17].)

5.7 Proposition For all games x, y ∈ Ug? the following statements hold.
(1) Lx ⊆ ↓Ly and Ry ⊆ ↑Rx =⇒ x ≤ y,
(2) ↓Lx = ↓Ly and ↑Ry = ↑Rx =⇒ x = y.

(It is not possible to replace the implications by equivalences. For instance,
x ≡ {∗|} = {|} ≡ y by 5.4 as ∗ ≡ {⊥|⊥} C ⊥ ≡ {|}, but Lx = {∗} 6= ∅ = ↓Ly.)
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Proof:
(1): Because of Lx ⊆ ↓Ly we have Lx C y (i. e. xL C y for all xL ∈ Lx) and
because of Ry ⊆↑Rx we have x C Ry (i. e. x C yR for all yR ∈ Ry).
(2) is a consequence of (1). �

5.8 Interpretation Proposition 5.7 (2) can be interpreted as follows:
The omission of any dominated option leaves the value of a game unchanged.
(A dominated option of x is a Left option xL ∈ ↓(Lx r

{
xL

}
) or a Right option

xR ∈ ↑(Rx r
{
xR

}
).)

First Part
. . . and Numbers

6 Conway numbers

6.1 Motivation The difference xL−x (resp. x−xR) is the so-called incentive
for a move from x to xL (resp. from x to xR), cf. [ONAG]=[11] p. 207.
If xL < x (resp. xR > x) does always hold, Left (resp. Right) will try to avoid
moving in x because every move would be disadvantageous. (High values are
advantageous for Left, while low values are advantageous for Right.)
A game z ∈ Ug? with this negative incentive property, in which in addition
all (Left and Right) options also have this same property, is called Conway
number.

6.2 Definition (Conway numbers)
A Conway number is a Conway game z ∈ Ug? satisfying the following conditions:
(N1) zL C zR for all zL ∈ Lz, zR ∈ Rz,
(N2) all zL ∈ Lz and all zR ∈ Rz are Conway numbers.

Analogously to 1.2 define sets Nα ⊂ Gα for every α ∈ On?:
N0 := Γ(∅), N1 := { z ∈ Γ(N0) : (N1) } , N2 := { z ∈ Γ(N1) : (N1) } , . . .

Nω :=
{
z ∈ Γ

( ∞⋃
k=0

Gk

)
: (N1)

}
, Nω+1 := { z ∈ Γ(Gω) : (N1) } , etc.

Then Noj :=
⋃
{Nα : α ∈ Onj } may be called the j-th Conway number class

(j ∈ N0), and No? :=
⋃
{Nα : α ∈ On? } =

⋃∞
j=0 Noj denotes the set of all

Conway numbers. (Conway took the name No to denote his proper class of
numbers, cf. [ONAG]=[11] p. 4.)

6.3 Examples
(M, ∅) and (∅,M) are Conway numbers for any set of Conway numbers M ⊂ Nα
(α ∈ On?). Especially ⊥ ≡ {|}, 1L ≡ {⊥|} and 1R ≡ {|⊥} are Conway numbers.
∗ ≡ {⊥|⊥} is not a Conway number as ⊥ C ⊥ does not hold.

6.4 Remark (Properties of Conway numbers)
For all Conway numbers z, z1, z2 ∈ No? we have
(1) zL < z < zR whenever zL ∈ Lz, zR ∈ Rz;
(2) z1 C z2 ⇐⇒ z1 < z2;
(3) −z, z1 + z2 ∈ No?.

Therefore No?, i. e. No? modulo = , is a subgroup of Ug?.
( (1) is proved using (N1) and 4.4 (3) by Conway number induction, i. e. by
transfinite induction on α ∈ On?, z ∈ Nα; with 4.3 (2) and 4.4 we obtain (2) as
consequence of (1) , and (3) is proved using (2) by Conway game inductions.)
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6.5 Lemma (Simplicity Lemma)
Let x ∈ Ug? be a game. Then x = z for any number z ∈ No? with Lx C z C Rx
(i. e. with xL C z C xR for all xL ∈ Lx, xR ∈ Rx), Lz ⊆ ↓Lx and Rz ⊆ ↑Rx.
(If the assumptions hold, z is the “simplest” Conway number between Lx and
Rx, because – as zL ≤ xL and xR ≤ zR hold for some xL ∈ Lx and xR ∈ Rx –
it is impossible that xL C zL C xR or xL C zR C xR can always hold.)

Proof:
z ≤ x: Because of Lz ⊆↓Lx we have Lz C x (i. e. zL C x for all zL ∈ Lz), and
by assumption we have z C Rx. (x ≤ z is proved similarly.) �

6.6 Auxiliary Theorem (Dyadic Conway numbers)
Set Dk := 2−kZ for all k ∈ N0, and let D∞ :=

⋃∞
k=0Dk denote the set of

dyadic rationals (i. e. rationals m
2k with m ∈ Z, k ∈ N0). Then the following

statements hold.
(1) There is a unique map c∞ : D∞ −→No? with image c∞[D∞] ⊆ No1 and

(i) c∞(0) ≡ {|} ≡ ⊥, the neutral element of No?,
(ii) c∞(n) ≡ {c∞(n− 1)|} for all n ∈ N,
(iii) c∞(−n) ≡ {|−c∞(n− 1)} for all n ∈ N,
(iv) c∞

(
2`+1
2k

)
≡

{
c∞

(
`

2k−1

) ∣∣c∞(
`+1
2k−1

)}
for all k ∈ N, ` ∈ Z.

(2) c∞ is reflection preserving and strictly increasing, i. e. we have
c∞(−s) ≡ −c∞(s) and c∞(s) < c∞(t) if s < t and s, t ∈ D∞.

(3) c∞ := pr ◦ c∞ defines an injective group homomorphism c∞ : D∞−→No?,
where pr : No? −→No? is the canonical projection (with No? as in 6.4).

Proof:
(1): First construct c0 : Z−→No? satisfying c0[Z] ⊂ No1 as well as (i), (ii) and
(iii) with c0 instead of c∞, then extend every map ck−1 : Dk−1 −→ No? to a
map ck : Dk −→ No? using (iv) with ck instead of c∞. Finally define c∞(s) to
be ck(s) if s ∈ Dk. Uniqueness is proved by inductions on n and on k.
(2) is proved using the identities from (1), while (3) is proved with 6.5. �

6.7 Convention
Dyadic rationals can be interpreted as Conway numbers by dint of 6.6. Numbers
of the form c∞(s) with s ∈ D∞ may be called dyadic Conway numbers.
Occurrences of c∞ will usually be suppressed, provided that no misunderstand-
ings are to be expected, e. g.
0 ≡ {|}, 1 ≡ {0|}, 2 ≡ {1|}, 3 ≡ {2|}, . . . , 1

2 ≡ {0|1}, 1
4 ≡

{
0
∣∣ 1
2

}
, 3

4 ≡
{

1
2

∣∣1},
−1 ≡ {|0}, −2 ≡ {|−1}, −3 ≡ {|−2}, . . . , −1

2 ≡ {−1|0}, −1
4 ≡

{
− 1

2

∣∣0} etc.
(Writing 0 for ⊥ is consistent with Definition 1.6, as x%⊥ is equivalent to x% 0
for every % ∈ {≥,B,≤,C, >,<, ‖,=}; in 1.4 we have 1L ≡ 1 and 1R ≡ −1.)

7 Real Conway numbers

7.1 Definition (Real Conway numbers)
A Conway number z ∈ No? is called real if it satisfies the following conditions:
(R1) −n < z < n for some n ∈ N, and
(R2) for all zL ∈ Lz there is an m ∈ N with z − zL > 2−m

and for all zR ∈ Rx there is an m ∈ N with zR − z > 2−m.
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We call a (real) Conway number z located if c(s) < z or z < c(t) holds when-
ever s, t ∈ D∞ with s < t. In addition we set Noreal := { z ∈ No? : z is real }
and R := pr [{ z ∈ Noreal : z is located }] (with pr from 6.6).

7.2 Example All dyadic Conway numbers (cf. 6.7) are located reals.

7.3 Remark (Properties of real Conway numbers)
(1) R is a subgroup of No?.
(2) A real Conway number z is located if and only if for every k ∈ N there are
s, t ∈ D∞ with z − 2−k < s < z < t < z + 2−k.
(3) For all z1, z2 ∈ Noreal with z1 < z2 there is an m ∈ N with z2 − z1 > 2−m.

7.4 Auxiliary Theorem (Rational Conway numbers)
(1) c : Q−→No?, q 7−→ (c∞[{ s ∈ D∞ : s < q }], c∞[{ s ∈ D∞ : s > q }]) satisfies

c(s) = c∞(s) for all s ∈ D∞ (where c∞ and D∞ are as in 6.6).
(2) All rational Conway numbers (i. e. elements of c[Q]) are located reals.
(3) c is reflection preserving and strictly increasing, i. e. we have

c(−q) ≡ −c(q) and c(p) < c(q) if p < q and p, q ∈ Q.
(4) c := pr ◦ c defines an injective group homomorphism c : Q −→ No? with
image Q := c[Q] ⊂ R (where pr : No? −→No? is as in 6.6).
(5) Each of the following statements is equivalent to (LEM) from 1.9:

(a) Every z ∈ R can be approximated on both sides by rational numbers,
i. e. for all z ∈ R and all k ∈ N there are r1, r2 ∈ Q with

z − 2−k < r1 < z < r2 < z + 2−k.
(b) All Conway reals are located.

Proof: (1),(2): c(q) is a located real Conway number because c∞ is strictly
increasing, while c(s) = c∞(s) can be seen with 5.4.
(3) is proved using the definition of c, and (4) is proved with 6.5.
(5): “(a) ⇐⇒ (b)” is proved with 7.3, “(LEM) =⇒ (b)” follows from 1.9 (2),
and for “(b) =⇒ (LEM)” use the real Conway number zψ ≡ −xψ with xψ as in
the proof of 1.9. �

7.5 Definition (Rational cuts)
A rational cut is a pair (P,Q) of subsets P,Q ⊆ Q such that
(C1) P and Q are downwards resp. upwards closed : ↓P = P and ↑Q = Q,

i. e. p < p′ ∈ P =⇒ p ∈ P resp. q > q′ ∈ Q =⇒ q ∈ Q;
(C2) P and Q are disjoint, thus P < Q, i. e. p < q for all p ∈ P , q ∈ Q;
(C3) P and Q are open, i. e. for every p ∈ P there is a p′ ∈ P with p′ > p

and for every q ∈ Q there is a q′ ∈ Q with q′ < q.
A rational cut (P,Q) is called bounded if P and Q are non-empty, and (P,Q)
is called located if P ∪ Q is dense in Q (equivalently p ∈ P or q ∈ Q whenever
p, q ∈ Q with p < q).

7.6 Theorem (Real Conway numbers and rational cuts)
(1) For every rational cut (P,Q) there is a Conway number ĉ(P,Q) ≡ (c[P ], c[Q])
satisfying (R2), which is real (and located) if (P,Q) is bounded (and located).
(2) For every real Conway number z there is a rational cut č(z) := (Pz, Qz) with
Pz := { p ∈ Q : c(p) < z } and Qz := { q ∈ Q : c(q) > z }, which is located if z is
located. Whenever (P,Q) is located we have č(ĉ(P,Q)) = (P,Q).
(3) There is a bijection between R, defined in 7.1 to be the set of located Conway
reals modulo = , and the set R of Dedekind reals, i. e. bounded and located
rational cuts.
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Proof: (1) is proved straightforwardly.
(2): The assertions of the first sentence are verified easily, and s < ĉ(P,Q) can
hold with a located rational cut (P,Q) only if s ∈ P .
(3): For located reals we have Lz ⊆ ↓c[Pz], Rz ⊆ ↑c[Qz] using 7.3 (1), thus
z = ĉ(č(z)) holds by the Simplicity Lemma 6.5, as clearly c[Pz] < z < c[Qz]. �

Appendix
On Ordinals

A Ordinal Numbers

A.1 Motivation In [8] Georg Cantor constructed for any point set P a se-
quence of derived sets P ′, P ′′, . . . ; in [9] he generalized this construction and
obtained a sequence P ′, P ′′, . . . , P (∞), P (∞+1), P (∞+2), . . . containing derived
sets of infinite orders. The generalized numbers appearing here as orders of de-
rived sets were called ordinal numbers (“Ordnungszahlen”) by Cantor. In [10]
he defined sums and products for these numbers and wrote ω instead of ∞.

In the twentieth century other authors dealt with ordinal numbers as well-
ordered sets, e. g. Luitzen E. J. Brouwer in [7] and John von Neumann in [20].
This approach is nowadays preferred and leads to a proper class On, the collec-
tion of all ordinal numbers, cf. e. g. [21]. For the Conway theory presented in
this paper it is sufficient to use a set On? of ordinal numbers (defined in A.7)
instead of the proper class On.

The following definition adapts the notion of ordinal numbers given by
Per Martin-Löf in [18] p. 79ff and generalizes his definition of the second number
class. (W-types are not used.)

A.2 Definition (Ordinal numbers)
For every natural number j ∈ N0 define recursively a set Onj satisfying the
following conditions. (The set Onj may be called j-th ordinal number class.)
(i) 0 ∈ Onj ;
(ii) for any i ∈ {0, . . . , j − 1} and every function l : Oni −→ Onj there is an
element Sucji (l) in Onj ;
(iii) every element of Onj is constructed by (i) and (ii) in a finite number of
steps.
(For the functions l in (ii) extensionality, i. e. α = β =⇒ l(α) = l(β), is out of
question, because up to now we have not defined any equality relation on Onj ;
such a definition will be given in B.2.
Some readers might like to replace “function” by “operation” in (ii) as well
as in the whole appendix, understanding an operation to be a “nonextensional
function”, cf. [5] p. 15. Here the notion of operation is taken to be primitive,
it cannot be reduced to that of an extensional function with multiple values as
proposed in [19] p. 30f and included in [6] p. 54.
Similarly, it is possible to put “preset” instead of “set” throughout the appendix,
understanding a preset to be a “set without equality”, cf. [3] p. 34f.)

A.3 Hint
We may say that elements of the form Sucji (l) contain each l(α) (α ∈ Oni,
l : Oni −→Onj , i ∈ {0, . . . , j − 1}, j ∈ N0).
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Onj satisfies a Descending Chain Condition with respect to this relation of
containment (denoted by ≺): Because of A.2 (iii) there is no infinite sequence
(αn)n∈N with αn ∈ Onj and αn+1 ≺ αn for all n ∈ N.

A.4 Observation
The following Principle of Transfinite Induction holds due to the inductive
definition of the sets Onj .
To prove a proposition ψ(α) for all α∈Onj we must prove the Induction Basis
ψ(0), and for each function l : Oni−→Onj (i ∈ {0, . . . , j − 1}) we have to prove
the Induction Step

(
∀α∈Oni : ψ(l(α))

)
=⇒ ψ(Sucji (l)).

We also have a form of Definition by Transfinite Recursion for functions with
ordinal numbers as arguments.
To define a function f : Onj−→X from Onj to a setX, we must define f(0) ∈ X,
and for each function l : Oni −→ Onj (i ∈ {0, . . . , j − 1}) we have to define
f(Sucji (l)) ∈ X, possibly using already defined values f(l(α)) ∈ X (α ∈ Oni).

A.5 Remark (Recursion operators)
For N0 there is a natural recursion operator “rec” with rec(x, f) : N0 −→ X
for any set X, x ∈ X and f : N0 × X −→ X, such that rec(x, f)(0) = x
and rec(x, f)(n + 1) = f(n, rec(x, f)(n)) for every n ∈ N0. The corresponding
recursion operator for On1 is “rec1” with rec1(x0, f0) : On1 −→ X for any set
X, x0 ∈ X and f0 : On1

On0 × XOn0 −→ X, such that rec1(x0, f0)(0) = x0

and rec1(x0, f0)(Suc1
0(l0)) = f0(l0, rec1(x0, f0) ◦ l0) for every l0 : On0 −→ On1.

Similarly, the recursion operator for Onj is “recj” (j ∈ N0) with
recj(x0, f0, f1, . . . , fj−1) : Onj −→X for any set X, x0 ∈ X,

fi : OnjOni ×XOni −→X (i ∈ {0, . . . , j − 1}),
such that

recj(x0, f0, f1, . . . , fj−1)(0) = x0 and
recj(x0, f0, f1, . . . , fj−1)(Sucji (li)) = fi(li, recj(x0, f0, f1, . . . , fj−1) ◦ li)

for every li : Oni −→Onj (i ∈ {0, . . . , j − 1}).

A.6 Note
For any j, j′ ∈ N0 with j < j′ we obtain by transfinite recursion (cf. A.4) a
function hj j′ : Onj −→ Onj′ , with 0 7−→ 0 and Sucji (l) 7−→ Sucj

′

i (hj j′ ◦ l) for
every l : Oni −→Onj , i < j.
Similarly we obtain functions gj′j : Onj′ −→ Onj (j, j′ ∈ N0, j < j′) with
0 7−→ 0, Sucj

′

i (l) 7−→ Sucji (gj′j ◦ l) whenever l : Oni −→Onj′ , i ∈ {0, . . . , j − 1},
and Sucj

′

i (l) 7−→ gj′j(l(0)) whenever l : Oni −→Onj′ , i ∈ {j, . . . , j′ − 1}. (With
respect to = as in B.2 these functions are not extensional in the sense of A.2.)

Because gj′j(hj j′(α)) is α for all α ∈ Onj (by transfinite recursion, cf. A.4),
hj j′ is an embedding of Onj into Onj′ for every j < j′.

A.7 Convention
By dint of the functions hj j′ from A.6 we can interpret elements of Onj as
elements of any Onj′ with j′ > j, and we will write Suci instead of Suci+1

i as well
as instead of Sucji whenever the choice of j > i does not matter. Furthermore

we define On? :=
∞⋃
j=0

Onj ; elements of this set may be called ordinal numbers.
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A.8 Notation
Let lα : On0−→On?, x 7−→α denote the constant function with value α ∈ On?.
Then we have a successor function suc : On? −→On?, α 7−→ Suc0(lα).
It is customary to distinguish three forms of ordinal numbers:

0. the zero ordinal 0,
1. successor ordinals of the form suc(α) with α ∈ On?,
2. lim-ordinals of the form Suci(l) with l : Oni −→Onj , 0 < i < j.

For lim-ordinals λ it is sometimes convenient to use a notation like limα∈Oni l(α)
instead of Suci(l). Such a λ would be called limit ordinal if l is strictly increasing
with respect to the relation < defined in B.2.

A.9 Examples
(0) The zero ordinal 0 is the only element of On0.
(1) The elements of On? constructed from 0 by applying the function suc a finite
number of times may be called finite ordinal numbers. Let us denote suc(0) by 1,
suc(1) by 2, suc(2) by 3, etc. Then we see that On1, the set of all finite ordinal
numbers, is just a disguised form of the set N0 of natural numbers. (Even though
On1 has infinitely many elements, the set On1 is finitely presented.)
(2) Because of (1), we can identify On1-sequences with ordinary sequences. Let
ω denote Suc1(0, 1, 2, . . .), i. e. ω is Suc1(h12) ∈ On2 with h12 from A.6. (As
h12 is rec1(0, f0) with f0(l0, l) := Suc2

1(l) for l0 : On0 −→ On1, l : On0 −→ On2

and rec1 as in A.5, the construction of ω requires only a finite number of steps.)
Then we have a transfinite sequence 0, 1, 2, . . . , ω, suc(ω), suc(suc(ω)), . . . similar
to Cantor’s sequence of derivational orders mentioned in A.1. By means of B.5
we will be able to write ω + 1 for suc(ω), ω + 2 for suc(suc(ω)), etc.
(3) More generally, let ωj−1 denote the ordinal number Sucj(hj j+1) for every
j ∈ N (with hj j+1 as defined in A.6). Then ω0 is ω, and for any j ∈ N the
element ωj−1 in Onj+1 contains every element of Onj , i. e. α ≺ ωj−1 holds for
all α ∈ Onj (if hj j+1(α) is identified with α as in A.7; for ≺ cf. A.3).

B Ordinal order and ordinal addition

B.1 Motivation
There is a function c? : On? −→No? which meets the following conditions.
(i) c?(0) ≡ {|} ≡ ⊥, the neutral element of No?,
(ii) c?(suc(α)) ≡ {c?(α)|} for all α ∈ On?,
(iii) c?(λ) ≡ (c?[l[Oni]], ∅) for all lim-ordinals λ of the form Suci(l) with

l : Oni −→Onj , 0 < i < j.
(Construct by transfinite recursion (cf. A.4) functions cj : Onj −→No?, j ∈ N0,
satisfying cj [Onj ] ⊂ Noj as well as (i), (ii) and (iii) with cj instead of c?. Then
define c?(α) to be cj(α) if α ∈ Onj .)

By transfinite induction (cf. A.4) we have c?(α) ∈ Nα for all α ∈ On?, so
c?[On?] ⊂ No?. Conway numbers of the form c?(α) with α ∈ On? may be called
Conway ordinals.

As Lc?(α) = c?[{α′ ∈ On? : α′ ≺ α }] (for ≺ see A.3) and Rc?(α) = ∅ for all
α ∈ On?, characterization 4.3 (1),(2) might motivate Definition B.2. (Because
of 6.4 (2) we write < instead of C.)
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B.2 Definition (Ordinal order)
For ordinal numbers α, β ∈ On? define
α ≤ β :⇐⇒ ∀α′ ≺ α : α′ < β, α ≥ β :⇐⇒ β ≤ α,
α < β :⇐⇒ ∃β′ ≺ β : α ≤ β′, α > β :⇐⇒ β < α,
α = β :⇐⇒ α ≤ β and β ≤ α.

B.3 Note For all ordinal numbers α, β ∈ On? we have
(1) 0 ≤ α and ¬(α < 0),
(2) ¬(α ≤ β and α > β),
(3) α ≤ α,
(4) α ≺ β =⇒ α < β.

(0 does not contain any ordinal number, so (1) is plain; (2) and (3) are easily
proved by transfinite induction, and (4) is a consequence of (3).)

B.4 Lemma (Properties of ordinal order)
For all ordinal numbers α, β, γ ∈ On? the following statements hold.
(1) α ≤ β and β ≤ γ =⇒ α ≤ γ,
(2) α ≤ β and β < γ =⇒ α < γ,
(3) α < β and β ≤ γ =⇒ α < γ,
(4) α < β and β < γ =⇒ α < γ,
(5) α < β =⇒ α ≤ β.

Proof:
(1), (2) and (3) are mutually proved by transfinite induction:
1) α′ ≺ α ≤ β ≤ γ =⇒ α′ < β ≤ γ [by B.3 (4) and Ind. Hyp. (3) ]

=⇒ α′ < γ [by Ind. Hyp. (3)].
2) α ≤ β ≤ γ′ ≺ γ =⇒ α ≤ γ′ [by Ind. Hyp. (1)].
3) α ≤ β′ ≺ β =⇒ α ≤ β′ < γ [because β ≤ γ]

=⇒ α < γ [by Ind. Hyp. (2)].
(4) and (5) are mutually proved by transfinite induction:
4) α < β ≤ γ′ ≺ γ =⇒ α < γ′ [by (3)]

=⇒ α ≤ γ′ [by Ind. Hyp. (5)].
5) α′ ≺ α < β =⇒ α′ < β [by B.3 (4) and Ind.Hyp. (4)]. �

B.5 Definition (Ordinal addition)
By transfinite recursion (cf. A.4) we define the sum of two ordinal numbers
according to the form of the second summand (cf. e. g. Proposition 6.3.3 in [21])

α+ 0 := α,
α+ suc(β) := suc(α+ β) for every β ∈ On?,
α+ Suci(l) := limγ∈Oni(α+ l(γ)) whenever l : Oni −→Onj , 0 < i < j.

So we obtain a function addOn? : On?×On?−→On?, (x, y) 7−→x+ y satisfying
addOn?(α, β) ∈ Onj whenever α, β ∈ Onj .

B.6 Examples
(1) Ordinal addition on On1 can be seen to be just the ordinary addition for
natural numbers (cf. A.9 (1)).
(2) We have α < α+ 1 for all α ∈ On? and ν < ω for all ν ∈ On1:

0 < 1 < 2 < . . . < ω < ω + 1 < ω + 2 < . . . (cf. A.9).
(3) Because of 1 + ω = ω < ω + 1, ordinal sums generally depend on the order
of summation.
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B.7 Proposition (Properties of ordinal addition)
For all ordinal numbers α, β, γ ∈ On? the following statements hold.
(1) 0 + γ = γ,
(2) α+ (β + γ) = (α+ β) + γ,
(3) α ≤ β =⇒ α+ γ ≤ β + γ,
(4) α = β =⇒ α+ γ = β + γ,
(5) α+ β ≤ α+ γ ⇐⇒ β ≤ γ,
(6) α+ β < α+ γ ⇐⇒ β < γ,
(7) α+ β = α+ γ ⇐⇒ β = γ.

(Associativity of ordinal addition is well known since Cantor, cf. [10] p. 550f. As
0 + ω = 1 + ω, (3) with < instead of ≤ does not hold, and (5), (6) and (7) with
reversed order of summation are not valid.)

Proof:
(1), (2) and (3) are proved straightforwardly by transfinite inductions (on γ),
(4) is a consequence of (3); (5) and (6) are mutually proved by transfinite
induction, and (7) is a consequence of (5). �

B.8 Result (On? monoid)
≤ is a preorder relation (reflexive and transitive) on On? with associated equiv-
alence relation =, and < is a strict partial order relation on On?. Thus On?
(i. e. On? modulo =) with ordinal addition and ordinal order is an ordered
monoid, having 0 as neutral element. In On? the left cancellation law does
hold, but On? is not commutative.

B.9 Remarks
(1) The function c? from B.1 is extensional (in the sense of A.2), injective and
strictly increasing: We have c?(α) % c?(β) ⇐⇒ α%β for all α, β ∈ On? and for
every % ∈ {≤, <,=}. Furthermore c? satisfies c?(α + β) ≤ c?(α) + c?(β) for all
α, β ∈ On?; c? is not a homomorphism, as this inequality is strict for α = 1,
β = ω.
(2) A necessary and sufficient condition for Onj+1 to be totally ordered, i. e.
α ≤ β or α > β for all α, β ∈ Onj+1, is the j-th limited principle of omniscience
(LPOj) ∀α ∈ Onj : l(α) = 0 or ∃α ∈ Onj : l(α) = 1 for each l : Onj−→{0, 1}.
(If On1 is replaced by the set of natural numbers in (LPO1) we obtain Bishop’s
LPO as in [5] p. 3 or [19] p. 4. Because (LEM) implies (LPOj) for any j ∈ N0,
in classical mathematics On? is totally ordered.)

First observe that (LPOj) implies (LPOi) for every i ∈ {0, . . . , j − 1}:
For l : Oni −→ {0, 1} apply (LPOj) to l ◦ gj i with gj i as in A.6.

Now prove sufficiency by transfinite induction on α:
For α = Sucj+1

i (l) with l : Oni−→Onj+1 and β ∈ Onj+1 define lβ : Oni−→{0, 1}
with lβ(γ) = 0 if l(γ) < β and lβ(γ) = 1 if l(γ) ≥ β (this is possible by
Ind.Hyp.). Apply (LPOi) to lβ , then use α ≤ β ⇐⇒ ∀ γ ∈ Oni : lβ(γ) = 0
and α > β ⇐⇒ ∃ γ ∈ Oni : lβ(γ) = 1.

(LPOj) is necessary because for every l : Onj−→Onj+1 with l[Onj ] ⊆ {0, 1}
we have Sucj(l) ≤ 1 ⇐⇒ ∀α ∈ Onj : l(α) < 1 ⇐⇒ ∀α ∈ Onj : l(α) = 0, and
Sucj(l) > 1 ⇐⇒ ∃α ∈ Onj : l(α) ≥ 1 ⇐⇒ ∃α ∈ Onj : l(α) = 1.
(3) It is possible to define ordinal multiplication by transfinite recursion in a
manner similar to B.5 (cf. e. g. Proposition 6.4.3 in [21]).
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to both of them for giving me a fresh impetus to improve the performance. The
criticism and the many questions of the referee were an incentive to make the
appendix more comprehensive; he recommended the references [14], [15], [16]
and [19] section I.6.

This paper is dedicated to my wife Monika and to our newborn daughter
Lena Tabea. Thanks to their patience I could finish the revision of it in time.
Let us appreciate the indispensable value of playing for the development of
human life.

References

[1] Ulrich Berger, Horst Oswald, Peter Schuster (eds.): Reuniting the An-
tipodes, Constructive and Nonstandard Views of the Continuum, Proceed-
ings of the Symposion in San Servolo/Venice, Italy, May 17–22, 1999.
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