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Abstract

We define the Albert algebra of generic matrices and show that its
central closure is an Albert division algebra as well as a pure second
Tits construction. It contains a cyclic cubic subfield iff this holds true
for every Albert division algebra over any extension of the base field.

0. Introduction. Thanks to their close connection with exceptional alge-
braic groups of type F4, Albert algebras, which used to be called exceptional
simple Jordan algebras in the past, have attracted considerable attention over
the last couple of years [10]. In particular when it comes to the classification
problem, the two Tits constructions, which are known since the work of Tits
(cf. Jacobson [5]) and McCrimmon [13, 14] to cover all Albert algebras over
arbitrary base fields, play an important rôle. Here it is the second construc-
tion that requires considerably more care than the first. Therefore examples
of pure second Tits constructions, i.e., of Albert algebras which cannot be
obtained by the first, are of interest. Examples of this kind were originally
supplied by Albert [2]. Later ones due to Petersson-Racine [23] and Thakur
[29] have the advantage of being slightly more explicit.



In the present paper, working over an arbitrary commutative associative
ring k of scalars, we define the Albert algebra of generic matrices, written
as Ak[X], in the spirit of Amitsur (cf. Rowen [27]) and derive some of its
more elementary properties. Over fields of characteristic not 2 or 3, a slight
modification of this algebra has been studied earlier by Polikarpov [24] and
Iltyakov-Shestakov [4] from the point of view of invariant theory. If k is an
integral domain, we show that Ak(X), the central closure of Ak[X], is an
Albert division algebra over its centroid whose quadratic trace [20] becomes
anisotropic over the orthogonal complement of any separable cubic subfield;
in particular, Ak(X) must be a pure second Tits construction. We also
show that the question of Albert [2] concerning the existence of cyclic cubic
subfields has an affirmative answer for all Albert division algebras if and only
if this is so for Ak(X).

1. Preliminaries. All Jordan algebras considered in the sequel (as well
as subalgebras and homomorphisms thereof) are supposed to be unital; we
refer to Jacobson [6] for a systematic account of the theory.

The centroid of a Jordan algebra J oder k will be denoted by Γ(J). In case
this is an integral domain, with quotient field Γ(J), we call J ⊗Γ(J) Γ(J) the
central closure of J . If the natural map from k to Γ(J) is bijective, J is
said to be central. J is called separable if it is finitely generated projective
as k-module and J ⊗ κ(p) is separable over the quotient field κ(p) of k/p for
all prime ideals p ⊂ k, unadorned tensor products always being taken over
k. This amounts to the associated Jordan pair (J, J) being separable in the
sense of Loos [9].

The term “k-algebra” without further specification refers to unital commu-
tative associative k-algebras. If M is a k-module, we follow [9, 4.] to denote
by Ma the functor from k-algebras to sets which assigns to every k-algebra
R the set M ⊗ R. Given k-modules M, N , a polynomial map from M to
N is a natural transformation from Ma to Na; see Roby [26] for details and
Loos [8, §18] for a quick introduction to the subject. In particular, if M, N
are finite-dimensional vector spaces over an infinite field, this notion reduces
to the customary one.



By a k-field we mean a k-algebra which happens to be a field. By an extension
field of k we mean a k-field K such that the natural map from k to K is an
imbedding (forcing k to be an integral domain).

2. Albert algebras over rings. We write A0 for the neutral Albert
algebra over k, so A0 = H3(C

0) where C0 = Zor(k) is the neutral octonion
algebra of Zorn vector matrices over k [19, 3.1] and H3(C

0) stands for the
Jordan algebra of 3-by-3 hermitian matrices with entries in C0 and scalars
down the diagonal, the latter condition being automatic if there are no 2-
torsions. Following Achhammer [1, 1.9], we define an Albert algebra over k to
be a k-Jordan algebra A which is finitely generated projective as k-module
and satisfies A ⊗ K ∼= A0 ⊗ K for all algebraically closed k-fields K. By
[1, 1.10], or by arguing as in [9, 9.], it follows that a Jordan algebra A over
k is Albert if and only if it becomes isomorphic to A0 after a faithfully flat
extension. Hence our terminology is compatible with the one of Parimala-
Suresh-Thakur [17]. Also, by faithfully flat descent, all Albert algebras A
over k arise from cubic forms with adjoint and base point [1, 1.16]: A =
J(V, N, ], 1) where V is a k-module, N = NA : V → k is a cubic form (the
norm of A), ] : V → V is a quadratic map (the adjoint of A) and 1 ∈ V is a
point (the unit of A) such that, setting T = TA = −(D2 log N) (1) (the trace
of A), the relations x]] = N(x)x, N(1) = 1, T (x], y) = (DN)(x)y, 1] = 1, 1×
y = T (y)1− y (× the bilinearisation of ], T (y) = T (y, 1)) hold in every base
change of A. The U -operator of A is then given by Uxy = T (x, y)x− x] × y.
The formula S(x) = T (x]) defines a quadratic form S = SA : A → k, called
the quadratic trace of A. Every element x ∈ A satisfies the equation

(1) x3 − T (x)x2 + S(x)x−N(x)1 = 0.

In what follows, N, ], S, T will be viewed as polynomial maps in the sense 1.,
so they act naturally (and under the same notation) on any base change of
A. Notice also that realizing A = J(V, N, ], 1) as above is compatible with
base change. The norm, adjoint, quadratic trace, trace of A0 will be denoted
by N0, ]0, S0, T 0, respectively.

Every Albert algebra A over k is obviously separable. It is also central since
A0 is [14, Proposition 6] and A and A0 become isomorphic after a faithfully
flat base change.



3. Albert orders. Other sources of the literature define Albert algebras
in a different way. The following result, which will also become important
later on, clarifies the connections.

Theorem (McCrimmon [15, 1.27] . For a central Jordan algebra J over k,
the following statements are equivalent.
(i) There exists an extension field K of k and a k-imbedding J ↪→ A0 ⊗ K
whose image spans all of A0 ⊗K over K.
(ii) There exists an extension field K of k such that J ⊗K ∼= A0 ⊗K.
(iii) J is generically of Albert type, i.e., J is prime (forcing k ∼= Γ(J) to
be an integral domain [6, 7.6.5]), and the central closure of J is an Albert
algebra over the quotient field of k.

¤

A central Jordan algebra over k satisfying the equivalent conditions of
McCrimmon’s Theorem will be called an Albert order. Indeed, if k is a
Dedekind domain with quotient field K, Albert orders over k are the same
as orders in the arithmetic sense of Albert algebras over K, see Racine [25]
for details. Quite generally, Albert orders as defined here agree with Albert
algebras as defined in Jacobson [6], McCrimmon [15], and Zel’manov [30];
hence, by the Zel’manov-McCrimmon structure theory [16], they are also the
same as strongly prime exceptional Jordan algebras.

Corollary. A Jordan algebra over k is a central separable Albert order if
and only if it is an Albert algebra and k is an integral domain.

Proof. Suppose first that A is a central separable Albert order over k. By
McCrimmon’s Theorem, k is an integral domain, and the type of the Jordan
pair attached to A [9, 8.] defines a function from X = Spec k to the integers
which is locally constant [9, Theorem 2], hence constant since X is connected
(even irreducible). Therefore, as the generic fibre of A is an Albert Algebra
(part (iii) of McCrimmon’s Theorem), so are its fibres over all points of X,
i.e., A is an Albert algebra. Conversely, let this be so and let k be an integral
domain. Then A is central separable and its central closure agrees with its
generic fibre, hence must be an Albert algebra over the quotient field of k.

¤



4. Generic matrices. Let ξ = (ξip)1≤i≤27,p≥1 be a family of independent
indeterminates and write R = k[ξ] for the corresponding polynomial ring.
Once and for all we fix a k-basis (ei)1≤i≤27 of A0 and consider the sequence
X = (Xp)p≥1 of generic matrices

(2) Xp =
27∑
i=1

ei ⊗ ξip ∈ A0 ⊗R (p ≥ 1).

We denote by Ak[X] the k-subalgebra of A0 ⊗ R generated by the elements
Xp, p ≥ 1. Up to isomorphism, Ak[X] does not depend on the basis chosen;
it is loosely called the Albert algebra of generic matrices (although it is not
an Albert algebra over k in the sense of section 2), see Polikarpov [24] and
Iltyakov-Shestakov [4] for slight modifications of this over fields of character-
istic 6= 2, 3 and Rowen [27, 1.3.5] for the corresponding terminology in the
associative case.

Observing that the element

∆ = det(ξij)1≤i,j≤27 ∈ R

is not a zero divisor, we may canonically identify R as a subring of the
localization R∆ and A0 ⊗ R as an R-subalgebra of A0 ⊗ R∆; also, ∆ is
invertible in R∆. Hence, restricting (2) to indices p ≤ 27, we conclude

(3) R∆Ak[X] = A0 ⊗R∆.

This allows us to describe the centroid of Ak[X] as follows.

Proposition 1. The centroid Γk[X] of Ak[X] identifies canonically with the
stabilizer of Ak[X] under the action of R∆ on A0 ⊗R∆ by scalar multiplica-
tion:

Γk[X] = {r ∈ R∆ : rAk[X] ⊂ Ak[X]}.

Proof. We closely follow the argument of McCrimmon [15, 1.29 and the
proof of 1.27], allowing us to skip a few details. Let γ ∈ Γk[X]. Using (3),
we extend γ to a map γ′ : A0 ⊗R∆ −→ A0 ⊗R∆ by setting

(∗) γ′(
∑

rjfj) =
∑

rjγ(fj)



for rj ∈ R∆, fj ∈ Ak[X]. Once we have shown that γ′ is well defined, it is
straightforward to check that it belongs to the centroid of A0⊗R∆ over R∆,
and Proposition 1 follows. In order to prove that (∗) makes sense, we choose
rj, fj as above satisfying

∑
rjfj = 0 to establish

∑
rjγ(fj) as an element of

Ker(A0 ⊗R∆) = {x ∈ A0 ⊗R∆ : Ux = Ux,y = 0 for all y ∈ A0 ⊗R∆},
which, as noted in [6, 5.4], is zero for all standard Jordan matrix algebras.

¤

5. Polynomial identities. Let Jk[Y] be the free Jordan algebra over k
in a sequence Y = (Yp)p≥1 of independent generators Y1, Y2, . . .. Given any
Jordan algebra J over an arbitrary k-algebra and any sequence u = (up)p≥1

in J , the evaluation

εu : Jk[Y] −→ J, f 7−→ f(u) = εu(f),

is the unique k-homomorphism sending Yp to up for p ≥ 1. As in the as-
sociative case [27, 1.1.12], f ∈ Jk[Y] is said to be an identity for J (as a
k-algebra) if f(u) = 0 for all sequences u in J as above. Notice that each
f ∈ Jk[Y] depends on a finite number of Y ’s only: f = f(Y1, . . . , Yn), n ∈ N
varying with f , and so may be regarded as a polynomial map Jn −→ J via
evaluation. In particular, for f 6= 0 and J finite-dimensional over an infinite
k-field, we conclude f(u) 6= 0 on a Zariski-dense subset of Jn. Notice also
that the entire set-up especially applies to J = Ak[X],u = X. The following
result and its corollaries have wellknown associative analogues whose proofs
we will follow closely, cf. Rowen [27, 1.3.6 - 1.3.11] for details.

Proposition 2. Notations being as in 4., 5., let k′ be a k-algebra and A an
Albert algebra over k′. Given a sequence u = (up)p≥1 of elements in A, there
exists a unique k-homomorphism ε∗u : Ak[X] −→ A sending Xp to up for
all p ≥ 1. More specifically, given any faithfully flat k′-algebra k′′ and any
isomorphism Φ : A0 ⊗ k′′−̃→A ⊗k′ k

′′ over k′′ (the existence of k′′, Φ being
assured by 2.), there exists a unique k-homomorphism αu : R −→ k′′ such
that ε∗u is induced from Φ ◦ (1A◦ ⊗ αu) via restriction. Finally, the relations

NA(ε∗u(x)) = αu(N0(x)),



TA(ε∗u(x), ε∗u(y)) = αu(T 0(x, y)),

SA(ε∗u(x)) = αu(S0(x))

hold for all x, y ∈ Ak[X].

Proof. Uniqueness of ε∗u is obvious. To prove its existence, we write Φ−1(up) ∈
A0 ⊗ k′′ in the form

Φ−1(up) =
27∑
i=1

ei ⊗ bip, bip ∈ k′′ for 1 ≤ i ≤ 27, p ≥ 1,

and consider the unique k-homomorphism αu : R −→ k′′ sending ξip to
bip (1 ≤ i ≤ 27, p ≥ 1). Then Φ ◦ (1A0 ⊗αu) maps each Xp to up (a property
which determines αu uniquely) and hence yields ε∗u as claimed. The three
formulae at the very end follow from the fact that polynomial maps are
compatible with base change. ¤

Corollary 1. For f ∈ Jk[Y] the following statements are equivalent.
(i) f is an identity for A0 ⊗R.
(ii) f is an identity for Ak[X].
(iii) f(X) = 0.

Proof. Since Ak[X] is a k-subalgebra of A0⊗R, (i) implies (ii). The implica-
tion (ii) =⇒ (iii) being obvious, it remains to prove (iii) =⇒ (i). Assume (iii)
and let u = (up)p≥1, be a sequence in A0 ⊗ R. Then Proposition 2 yields a
unique k-homomorphism ε∗u : Ak[X] −→ A0 ⊗R sending Xp to up for p ≥ 1.
It follows f(u) = ε∗u(f(X)) = 0. ¤

Given Jordan algebras J1, J2 ober k, we write J1 ≤k J2 if every identity
valid in J2 is valid in J1 as well, see Rowen [27, p. 5] for the corresponding
terminology in the associative setting.

Corollary 2. Ak[X] is the free object on X in the category of k-Jordan
algebras ≤k A0 ⊗R.

Proof . We have Ak[X] ≤k A0 ⊗ R by Corollary 1. Let J be any k-Jordan
algebra ≤k A0 ⊗ R and u = (up)p≥1 a sequence in J . Every element f ∈
ker εX ⊂ Jk[Y] is an identity for A0 ⊗ R (Corollary 1), hence for J , and we



conclude f(u) = 0. Hence ker εX ⊂ ker εu, so εu factors uniquely through
Ak[X]. ¤

Remark 1. Assuming that k is a field, k′ is a field extension F/k and k′′

stands for the algebraic closure F of F , Proposition 2 can be combined
with the following observation. Let m ∈ N, V be a finite-dimensional
vector space over k and P : A0m −→ V a polynomial map. Identifying
A0 ⊗ F = A ⊗F F = A by means of Φ, P determines a polynomial map
P : A

m −→ V ⊗ F in the classical sense, forcing

{x ∈ Am : P (x) 6= 0}

to be open dense in Am relative to the Zariski topology over F if P is nonzero
and F is infinite.

Remark 2. E. Neher has pointed out that, with proper adjustments, the
results obtained up to now remain valid under more general circumstances,
replacing the neutral Albert algebra A0 by any central separable Jordan
algebra over k which is free as a k-module.

6. The central closure. For the rest of the paper we assume that k is
an integral domain. This property carries over to the centroid of Ak[X]
(Proposition 1), allowing us to pass to the central closure

(4) Ak(X) = Ak[X]⊗Γk[X] Γk(X) ⊂ A0 ⊗K,

Γk(X), K being the quotient field of Γk[X], R, respectively. Since Ak[X]
by (3) spans all of A0 ⊗ K as a vector space over K, we conclude from
McCrimmon’s Theorem (3.) that Ak(X) is an Albert algebra over Γk(X).

Remark 3. (i) The last conclusion, a slightly different version of which has
already been stated by Iltyakov-Shestakov [4, p. 840] over fields of charac-
teristic not 2 or 3, in full generality is really the sticky point of the paper.
Analyzing the proof of McCrimmon’s Theorem shows that this conclusion
rests on the existence of central multiplication identities for Albert algebras
[15, (1.20), 1.23, 1.26] and is therefore unlikely, presently at least, to extend
intrinsically to arbitrary central separable Jordan algebras as in Remark 2.



(ii) The natural imbedding Ak[X] ↪→ A0 ⊗ K induces a K-homomorphism
Ak(X)⊗Γk(X) K −→ A0⊗K which is surjective by (3) and injective by outer
simplicity [14, Theorem 5]. We identify Ak(X) ⊗Γk(X) K = A0 ⊗K accord-
ingly. Then the norm, adjoint, quadratic trace, trace of A0 over k yield the
corresponding objects of Ak(X) over Γk(X) via restriction from A0 ⊗K.

7. Main results. We are now prepared to state the main results of the
paper. After having established a few indispensable prerequisites, proofs will
be given in section 10. below.

Theorem 1. Notations being as in 6., Ak(X) is an Albert division algebra
over Γk(X) and a pure second Tits construction.

Using the formula

T (x× y) = T (x)T (y)− T (x, y),

valid in every Jordan algebra J of degree 3 [13, p. 497], it follows that the
orthogonal complement of an étale (= separable commutative associative)
subalgebra of degree 3 in J relative to the trace agrees with the one relative
to the quadratic trace. With this in mind, we obtain

Theorem 2. The quadratic trace of Ak(X) over Γk(X) is anisotropic on the
orthogonal complement of any separable cubic subfield.

Remark 4. By contrast, the quadratic trace is always isotropic on the
separable cubic subfield itself [22, 3.3].

Theorem 3. If Ak(X) over Γk(X) admits a cyclic cubic subfield, so does
every Albert division algebra over any extension field of k.

8. Extension fields. In this section we assume that k is a field to establish
the existence of certain division algebras and anisotropic quadratic forms over
suitable extension fields of k. Our results are routine but indispensable.



Lemma 1. There exist Albert division algebras over suitable extension fields
of k.

Proof. By passing to k(t), t an indeterminate, and considering the polynomial
T 3+tT+t over k(t), we may assume that k admits a separable cubic extension
E/k. By passing to a suitable quadratic extension if necessary, we may
assume that E/k is cyclic. By passing to k(t) again, we may assume that
the norm NE/k is not surjective [5, IX, 12 Lemma 1, p. 417], allowing us to
construct a cyclic division algebra D of degree 3 over k [7, Exercise 8.5.3].
Repeating the preceding argument, we may assume that the generic norm
of D is not surjective. But then the first Tits construction [13, Theorem 6]
yields an Albert division algebra over k. ¤

There is another result along similar lines whose proof turns out to be even
easier and will therefore be omitted.

Lemma 2. There exist octonion division algebras over suitable extension
fields of k. ¤

Lemma 3. Let m be a positive integer and (q1, . . . , qm) (resp. T =
(T1, . . . , Tm)) be a family of anisotropic quadratic forms (resp. of independent
indeterminates) over k. Then the quadratic form

T1q1 ⊥ . . .⊥ Tmqm

is anisotropic over k(T ).

Proof. By induction we reduce to the case m = 2 and must show with a single
indeterminate t that q1 + tq2 is anisotropic over k(t). Writing Vi (i = 1, 2)
for the vector space over k on which qi is defined and xi 7→ xi(0) for the map
Vi ⊗ k[t] → Vi given by polynomial evaluation at 0, we argue indirectly to
find elements xi ∈ Vi ⊗ k[t] satisfying

q1(x1) + tq2(x2) = 0, (x1(0), x2(0)) 6= (0, 0).

Setting t = 0 yields x1(0) = 0, hence x1 = ty1 for some y1 ∈ V1 ⊗ k[t].
Substituting, dividing by t and setting t = 0 again yields x2(0) = 0 as well,
a contradiction. ¤



Remark 4. For char k 6= 2 the case m = 2 above can also be understood by
passing to the field k((t)) of formal Laurent series over k and by considering
residue class forms in the sense of Springer, cf. Scharlau [28, 6.2.6].

Lemma 4. Let (q1, q2, q3) (resp. T = (T1, T2, T3)) be a triple of anisotropic
quadratic forms (resp. of independent indeterminates) over k. Then the
quadratic form

< −1 > ⊥ (T2T3q1) ⊥ (T3T1q2) ⊥ (T1T2q3)

is anisotropic over k(T ).

Proof. The relations

(TiTi+1)(Ti+1Ti+2)

Ti+2Ti

= T 2
i+1 (i mod 3)

show that T2T3, T3T1, T1T2 are algebraically independent over k. Hence
Lemma 3 applies with q0 = < −1 > and an extra variable T0 to complete
the proof. ¤

9. Reduced Albert algebras. Assume that k is a field and let A be a
reduced Albert algebra over k, so A may be coordinatized as A = H3(C, g)
where C is an octonion algebra, g ∈ GL3(k) is a diagonal matrix and H3(C, g)
stands for the Jordan algebra of 3-by-3 g-hermitian matrices (x = g−1 txg)
having entries in C and scalars down the diagonal. More specifically, we
denote by n = nC the norm of C, set g = diag(g1, g2, g3) and employ the
customary notation for the hermitian matrix units [13, p. 502], allowing us
to write x, y ∈ A as

x =
∑

aiei +
∑

xi[jl], y =
∑

biei +
∑

yi[jl],

ai, bi ∈ k, xi, yi ∈ C (1 ≤ i ≤ 3), unspecified sums always being extended
over the cyclic permutations (ijl) of (123). Then the trace and quadratic
trace of A are given by

(5) T (x, y) =
∑

aibi +
∑

gjgln(xi, yi),

(6) S(x) =
∑

ajal −
∑

gjgln(xi).



The 3-by-3 diagonal matrices over k comprise a split étale subalgebra E0 of
A, and restricting S to the orthogonal complement of E0 by (3), (4) yields a
quadratic form

(7) Q = QA
∼= −((g2g3n) ⊥ (g3g1n) ⊥ (g1g2n)),

which up to isometry is independent of the coordinatization chosen [23, 2.2].
Following Faulkner [3, Lemma 1.5], A0(e1), the Peirce-zero-subalgebra of A
relative to e1, is given by

(8) A0(e1) = ke2 + ke3 + C[23]

and, in fact, agrees with the Jordan algebra of the quadratic form S on this
space with base point e2 + e3.

Proposition 3. Notations being as above, suppose the quadratic form

< −1 > ⊥ QA

is anisotropic. Then so is SA on the orthogonal complement of any étale
rank-3-subalgebra of A.

Proof. Let E ⊂ A be an étale subalgebra of rank 3. By passing to the base
change A⊗E if necessary, which is justified by Springer’s Theorem (cf. [22,
2.3] for a formulation in arbitrary characteristic), we may assume E = k⊕E ′

where E ′ is étale of rank 2 over k. Then E ′ is generated by an element z
solving the minimum equation z2 − z + θ1E′ = 0 for some θ ∈ k. In view of
(8), we can find a coordinatization A = H3(C, g) as above such that

(9) z = c2e2 + c3e3 + z1[23],

where c2, c3 ∈ k, z1 ∈ C satisfy the relations c2 +c3 = 1, c2c3−g2g3n(z1) = θ
and E is spanned as a vector space by e1, e2 + e3, z. Combining (5) with (9)
we conclude that E⊥ consists of all elements

x = a(e2 − e3) +
∑

xi[jl]

satisfying a ∈ k, xi ∈ C, (c3 − c2)a = g2g3n(z1, x1). Evaluating S = SA at
such an element yields

S(x) = −a2 −
∑

gjgln(xi)

by (6), and a comparison with (7) completes the proof. ¤



10. Proofs of the main results. We have assembled now all the neces-
sary machinery to carry out the proofs of Theorems 1,2,3 of 7. above.

Proof of Theorem 1, part I. We know that Ak(X) is an Albert-Algebra over
Γk(X) (6.).To show that it is a division algebra, we pick a nonzero element
x ∈ Ak(X) and must prove N0(x) 6= 0 (Remark 3 (ii)). Since there is no
harm in assuming x ∈ Ak[X], we have x = f(X) for some nonzero f ∈ Jk[Y].
Applying Lemma 1, we find a field extension F/k and an Albert division
algebra A over F . Since finite Jordan division rings canonically identify with
their centroids (McCrimmon [12], Petersson [18]), F must be infinite, so there
exists a sequence u = (up)p≥1 in A such that f(u) 6= 0, forcing NA(f(u)) 6= 0.
But then N0(x) 6= 0 by Proposition 2.

Proof of Theorem 2. Combining Lemmata 2,4 with (7) and Proposition 3,
we find a field extension F/k and a reduced Albert algebra A over F whose
quadratic trace is anisotropic on the orthogonal complement of any étale
rank-3-subalgebra of A. Now let E ⊂ Ak(X) be a separable cubic subfield.
Picking a generator x ∈ Ak[X] of E/Γk(X), we conclude x = f(X) for some
f ∈ Jk[Y] and

det (T 0(xi, xj))0≤i,j≤2 6= 0.

Hence Remark 1 yields a sequence u in A such that u = f(u) ∈ A satisfies

det (TA(ui, uj))0≤i,j≤2 6= 0;

in other words: u generates an étale subalgebra F [u] of rank 3 in A. Suppose
now that S0 is isotropic on E⊥. Then there exists a nonzero y = g(X) ∈
Ak[X], g ∈ Jk[Y], satisfying the relations S0(y) = T 0(xi, y) = 0 for i = 0, 1, 2.
Hence Remark 1 yields a sequence v in A having v = g(v) 6= 0, and by
Proposition 2, v ∈ F [u]⊥ is isotropic relative to SA, a contradiction. ¤

Proof of Theorem 1, part II. Since an Albert division algebra which is a first
Tits construction splits under a suitable cubic extension [20, Corollary 4.2],
its quadratic trace for char k 6= 2 (resp. the restriction thereof to the elements
of trace zero for char k = 2) has maximal Witt index, by Springer’s Theorem
and [23, 2.2], forcing it to become isotropic on the orthogonal complement of
any separable cubic subfield. Hence, by Theorem 2, Ak(X) must be a pure
second Tits construction. ¤



Proof of Theorem 3. A cubic field extension is cyclic if and only if it contains
distinct elements having the same minimum polynomial. Assuming E ⊂
Ak(X) to be a cyclic cubic subfield, we therefore find x = f(X) 6= y = g(X)
in Ak[X], f, g ∈ Jk[Y], satisfying, because of (1),

det (T 0(xi, xj))0≤i,j≤2 6= 0,

N0(x) = N0(y), S0(x) = S0(y), T 0(x) = T 0(y),

y = ϕ01 + ϕ1x + ϕ2x
2

for some ϕ0, ϕ1, ϕ2 ∈ Γk(X). Let A be an Albert division algebra over an
extension field F/k . Then Proposition 2 and Remark 1 yield a sequence u
in A such that u = f(u) 6= g(u) = v and

det (TA(ui, uj))0≤i,j≤2 6= 0,

NA(u) = NA(v), SA(u) = SA(v), TA(u) = TA(v),

v = b01 + b1u + b2u
2

with coefficients b0, b1, b2 in the algebraic closure F of F . Thus F [u] ⊂ A
is a cubic subfield, and v ∈ F [u] ∩ A = F [u] by (1) has the same minimum
polynomial as u. Hence F [u] is cyclic over F . ¤
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