The Serre-Rost Invariant of Albert Algebras in Characteristic three.

Holger P. Petersson

Fachbereich Mathematik, FernUniversität, Lützowstr. 125, D-58084 Hagen, Germany.

Michel L. Racine ${ }^{1}$

Department of Mathematics, University of Ottawa, 585 King Edward, K1N 6N5 Ottawa, Ontario
Canada.
0. Introduction. The authors [5] have recently developed an elementary approach to the Serre-Rost invariant of Albert algebras that is valid in all characteristics except 3. In this special case, Serre [9] has defined the invariant in a different way and established its existence by using Rost's original results [6] in characteristic zero and reducing them mod 3. It is the purpose of the present note to show that the elementary approach of [5] survives in characteristic 3 as well once the necessary modifications of the cohomological set-up as indicated in [8] have been carried out.

The authors wish to thank J.-P. Serre for valuable comments and his kind permission to publish the results of [9].

1. The reader is assumed to be familiar with the terminology, notations and results of [5]. We fix an arbitrary base field k of characteristic $p>0$ and write $\Omega=\Omega_{k}:=\Omega_{k / \mathbf{Z}}$ for the absolute universal differential algebra of k [2]. As a graded k-algebra, $\Omega=\underset{q \geq 0}{\bigoplus} \Omega^{q}$ is just the exterior algebra of $\Omega^{1}=\Omega_{k / \mathbf{Z}}^{1}$, the vector space of Kähler differentials of k over the integers; also, Ω comes

[^0]equipped with a universal differentiation, which is an additive map $d: \Omega \rightarrow \Omega$ of degree 1 .
2. Setting $\Omega^{q}=0$ for $q<0$, we follow [8, 10.1] to recall that, for each $q \geq 1$, there is a natural p-linear map
$$
\gamma: \Omega^{q-1} \longrightarrow \Omega^{q-1} / d \Omega^{q-2}
$$
satisfying
$$
\gamma\left(u \frac{d x_{1}}{x_{1}} \wedge \ldots \wedge \frac{d x_{q-1}}{x_{q-1}}\right)=u^{p} \frac{d x_{1}}{x_{1}} \wedge \ldots \wedge \frac{d x_{q-1}}{x_{q-1}} \bmod d \Omega^{q-2}
$$
for $u \in k, x_{1}, \ldots, x_{q-1} \in k^{\times}$. According to Kato [1] and Milne [3], the group
$$
H_{p}^{q}(k):=\operatorname{coker}(\gamma-\pi)
$$
π being the canonical projection $\Omega^{q-1} \rightarrow \Omega^{q-1} / d \Omega^{q-2}$, is the analogue in characteristic p of the groups $H^{q}\left(k, \boldsymbol{\mu}_{p}^{\otimes q-1}\right)$ in characteristic $\neq p$. Observe that there is a natural epimorphism
$$
\Omega^{q-1} \longrightarrow H_{p}^{q}(k), \omega \longmapsto<\omega>
$$
whose kernel is spanned by $d \Omega^{q-2}$ and the elements
$$
\left(u^{p}-u\right) \frac{d x_{1}}{x_{1}} \wedge \ldots \wedge \frac{d x_{q-1}}{x_{q-1}} \quad\left(u \in k, x_{1}, \ldots, x_{q-1} \in k^{\times}\right)
$$

We have

$$
H_{p}^{1}(k)=k / \wp k=H^{1}(k, \mathbf{Z} / p \mathbf{Z})
$$

where \wp is the Artin-Schreier map $u \mapsto u^{p}-u$.
3. The groups $H_{p}^{q}(k), q \geq 1$, are clearly functorial in k, so for every field extension l / k we have a natural map, which we call restriction,

$$
\operatorname{res}_{l / k}: H_{p}^{q}(k) \longrightarrow H_{p}^{q}(l)
$$

Conversely, if l / k is separable of finite degree, we may identify $\Omega_{l}=\Omega_{k} \otimes_{k} l$ canonically, and the trace form of l / k yields a map in the opposite direction, which we call corestriction,

$$
\operatorname{cor}_{l / k}: H_{p}^{q}(l) \longrightarrow H_{p}^{q}(k),
$$

such that

$$
\operatorname{cor}_{l / k} \circ \operatorname{res}_{l / k}=[l: k] \mathbf{1} .
$$

In particular, as in classical Galois cohomology, res $_{l / k}$ is injective unless p divides $[l: k]$. Finally, if l / k is a finite Galois extension with Galois group G, we conclude

$$
\operatorname{res}_{l / k} \circ \operatorname{cor}_{l / k}=\sum_{\sigma \in G} \sigma^{*}
$$

where σ^{*} denotes the natural action of $\sigma \in G$ on $H_{p}^{q}(l)$.
4. The natural map from k^{\times}to $k^{\times} / k^{\times p}$ will be symbolized by $\left.a \mapsto<a\right\rangle$. (This should not be confused with the map $a \mapsto[a]$ from k^{\times}to $H^{1}\left(k, \boldsymbol{\mu}_{n}\right)$ for n not divisible by p, cf. [5, 1.6].) It is straightforward to check that there is a unique Z-bilinear map

$$
H_{p}^{q}(k) \times\left(k^{\times} / k^{\times p}\right) \longrightarrow H_{p}^{q+1}(k)
$$

satisfying

$$
\left.(<\omega>,<a>) \longmapsto<\omega>\cdot<a>=[\omega, a)=<\omega \wedge \frac{d a}{a}\right\rangle
$$

for $\omega \in \Omega^{q-1}, a \in k^{\times}$(See [7], Chap XIV, $\S 5$ for similar expressions). This map serves as a substitute for the cup product in cohomology. In particular, it is stable under base change, and expressions like $(\langle\omega\rangle \cdot\langle a\rangle) \cdot\langle b\rangle$ are alternating in $\langle a\rangle,\langle b\rangle \in k^{\times} / k^{\times p}$.
5. Let E / k be a cyclic field extension of degree p and σ a generator of its Galois group. Then some $y \in E$ has ${ }^{\sigma} y=y+1$, forcing $x=y^{p}-y \in k$, and $[E, \sigma]=<x>$ in $H^{1}(k, \mathbf{Z} / p \mathbf{Z})=H_{p}^{1}(k)$. On the other hand, ${ }_{p} \operatorname{Br}(k)$, the p-torsion part of the Brauer group, identifies with $H_{p}^{2}(k)$ in such a way that, if $D=(E / k, \sigma, c)$ is a cyclic algebra of degree p over k, we have

$$
\begin{equation*}
[D]=[E, \sigma] \cdot<c> \tag{5.1}
\end{equation*}
$$

for the corresponding element in $H_{p}^{2}(k)$; see [11] for details.
6. Recall that if D is a central simple associative algebra of degree 3 over k and $a \in k^{\times}$then $V=D_{0} \oplus D_{1} \oplus D_{2}$, where $D_{i}=D(0 \leq i \leq 2)$, can
be endowed with a quadratic Jordan algebra structure induced by the cubic norm

$$
N(x):=N_{D}\left(x_{0}\right)+a N_{D}\left(x_{1}\right)+a^{-1} N_{D}\left(x_{2}\right)-T_{D}\left(x_{0} x_{1} x_{2}\right)
$$

for $x=\left(x_{0}, x_{1}, x_{2}\right) \in D$ and the base point $1=\left(1_{D}, 0,0\right), 1_{D}, N_{D}, T_{D}$ being the unit element, reduced norm, reduced trace, respectively, of D. By this, the first Tits construction, we obtain an Albert algebra, written as $\mathcal{J}(D, a)$. Conversely, given any Albert algebra \mathcal{J} over k, then either $\mathcal{J} \cong \mathcal{J}(D, a)$ as above or there exists a quadratic field extersion K / k such that $\mathcal{J} \otimes_{k} K \cong$ $\mathcal{J}(D, a)$ over K.
We can now state the main result of the paper.
7. Theorem. (Serre [9]). Let k be a field of characteristic 3. Then there exists a unique invariant assigning to each Albert algebra \mathcal{J} over k an element

$$
g_{3}(\mathcal{J}) \in H_{3}^{3}(k)
$$

which only depends on the isomorphism class of \mathcal{J} and satisfies the following two conditions.

SR1 If $\mathcal{J} \cong \mathcal{J}(D, a)$ for some central simple associative algebra D of degree 3 over k and some $a \in k^{\times}$is a first Tits construction, then

$$
g_{3}(\mathcal{J})=[D] \cdot<a>\in H_{3}^{3}(k) .
$$

$\mathrm{SR} 2 g_{3}$ is invariant under base change, i.e.,

$$
g_{3}\left(\mathcal{J} \otimes_{k} l\right)=\operatorname{res}_{l / k}\left(g_{3}(\mathcal{J})\right)
$$

for any field extension l / k.
Moreover, we have
SR3 g_{3} characterizes Albert division algebras, i.e., \mathcal{J} is a division algebra iff $g_{3}(\mathcal{J}) \neq 0$.
8. We first prove existence and uniqueness of the invariant g_{3}. To do so, we briefly summarize the contents of sections 3 and 4 in [5] and indicate the minor changes nesessary in characteristic 3 .

If we define

$$
\begin{equation*}
g_{3}(\mathcal{J}):=[D] \cdot<a>\in H_{3}^{3}(k) \tag{8.1}
\end{equation*}
$$

for a first Tits construction $\mathcal{J} \cong \mathcal{J}(D, a)$ as in 6 . and

$$
\begin{equation*}
g_{3}(\mathcal{J}):=-\operatorname{cor}_{K / k}\left(g_{3}\left(\mathcal{J} \otimes_{k} K\right)\right) \tag{8.2}
\end{equation*}
$$

for any separable quadratic field extension K / k such that $\mathcal{J} \otimes_{k} K$ is a first Tits construction then, as in [5, 3.4-3.7], one can show that the invariant is unique and that (8.2) is well defined provided (8.1) is.

Next we need the characteristic-3-version of [5, 4.3]:
9. Lemma. Assume char $k=3$, let D be a central simple associative k Algebra of degree 3 and $b \in N_{D}\left(D^{\times}\right)$. Then

$$
[D] \cdot=0
$$

Proof. We may assume that D is a division algebra and, by Zariski density, choose $u, y \in D^{\times}$satisfying $N_{D}(u)=b, T_{D}\left(y^{-1}\right) \neq 0 \neq T_{D}(y u)$. This implies $b=N_{D}\left(y^{-1}\right) N_{D}(y u)$, so by virtue of bilinearity (4.) we are allowed to assume that u generates an étale subalgebra of rank 3 in D. But then the proof may be completed in exactly the same manner as the one of [5, 4.3].
10. We now return to 8 . and prove that (8.1) is well defined by considering a first Tits construction \mathcal{J} as in 6 , which, because of Lemma 9, may assumed to be a division algebra. Choosing internally a Jordan subalgebra $A \subset \mathcal{J}$, a central associative division algebra D of degree 3 over k, an isomorphism $\eta: D^{+} \xrightarrow{\sim} A$ and an element $x \in \mathcal{J}$ which is associated with $(D, \eta)[5,4.4]$, it follows as in the proof of [5, 4.8] that

$$
\left.g_{3}(\mathcal{J}, A):=[D] \cdot<N_{\mathcal{J}}(x)\right\rangle
$$

depends only on A. (Observe that Lemma 9 takes care of the restriction on the characteristic in [5, 4.8], thereby removing the characteristic restrictions from [5, 4.12c)] and [5, 4.14] also.) It remains to show $g_{3}(\mathcal{J}, A)=g_{3}\left(\mathcal{J}, A^{\prime}\right)$ for any subalgebra $A^{\prime} \subset \mathcal{J}$ having the form $A^{\prime} \cong D^{\prime+}$ for some central simple associative k-algebra D^{\prime} of degree 3 . To this end we may assume that A, A^{\prime}
contain a common cyclic cubic subfield [5, 4.9] (the proof of this result works also in characteristic 3 since we are allowed to start with arbitrary separable subfields). Then [5, 4.16] produces a chain of neighbors connecting A with A^{\prime}, and $[5,4.14]$ shows $g_{3}(\mathcal{J}, A)=g_{3}\left(\mathcal{J}, A^{\prime}\right)$, as claimed.
11. In view of 8 . and 10 ., the only part of Theorem 7 demanding clarification is SR3. The easy direction follows from Lemma 9, so it remains to show that, conversely, \mathcal{J} being a division algebra implies $g_{3}(\mathcal{J}) \neq 0$. To do so, we will follow Serre's argument in [9]. Let k be a field of characteristic $p>$ 0 . By results of Teichmüller [10], there is a local field K_{0} of characteristic zero having residue field $\overline{K_{0}}=k$ and the property that $v_{0}(p)=1$ where $v_{0}: K_{0}^{\times} \rightarrow \mathbf{Z}$ is the valuation of K_{0}. Letting ζ be a primitive p-th root of unity, $K=K_{0}(\zeta)$ is totally ramified of degree $p-1$ over K_{0} having $b=\zeta-1$ as a local parameter. Write \mathfrak{o}_{K} for the valuation ring of K and $u \mapsto \bar{u}$ for the natural map $\mathfrak{o}_{K} \rightarrow k$. Among the various results of Kato [1] relating the Galois cohomology of local fields to their residue fields, we only need the existence of natural homomorphisms (cf. [1, Theorem 2 (i)])

$$
\kappa_{p}^{q}: H_{p}^{q}(k) \longrightarrow H^{q}(K, \mathbf{Z} / p \mathbf{Z})
$$

satisfying

$$
\begin{array}{rlr}
\kappa_{p}^{1}(<\bar{u}>) & =\left[1+b^{p} u\right] & \left(u \in \mathfrak{o}_{K}\right), \\
\left.\kappa_{p}^{q+1}(<\omega>) \cdot<\bar{a}>\right) & =\kappa_{p}^{q}(<\omega>) \cup[a] \quad\left(q \geq 1, \omega \in \Omega_{k}^{q-1}, a \in \mathfrak{o}_{K}^{\times}\right) . \tag{11.2}
\end{array}
$$

12. Keeping the situation described in 11., let E / K be an unramified cyclic field extension of degree p and σ a generator of its Galois group. Then one finds elements $x \in \mathfrak{o}_{K}^{\times}, y \in \mathfrak{o}_{E}^{\times}-K$ satisfying

$$
(1+b y)^{p}=1+b^{p} x,{ }^{\bar{\sigma}} \bar{y}=\bar{y}+1, \bar{y}^{p}-\bar{y}=\bar{x} .
$$

By 5. and (11.1), this implies $\kappa_{p}^{1}([\bar{E}, \bar{\sigma}])=[E, \sigma]$, which in turn, combining (5.1) with (11.2), yields

$$
\begin{equation*}
\kappa_{p}^{2}([\bar{D}])=[D] \tag{12.1}
\end{equation*}
$$

for any unramified cyclic division algebra D of degree p over k.
13. Assuming char $k=3$ again, we can now complete the proof of SR3 by showing $g_{3}(\mathcal{J}) \neq 0$ for any Albert division algebra \mathcal{J} over k. As usual, we may assume that $\mathcal{J} \cong \mathcal{J}(D, a)$ is a first Tits construction as in SR1. Using 11. and 12., we let \mathcal{J}_{1} be the unique unramified Albert division algebra over K having $\overline{\mathcal{J}_{1}} \cong \mathcal{J}$ [4, Theorem 2]. By [4, Proposition 4], $\mathcal{J}_{1} \cong \mathcal{J}\left(D_{1}, a_{1}\right)$ where D_{1} is the unique unramified associative division algebra of degree 3 over K having $\overline{D_{1}} \cong D$ and $a_{1} \in \mathfrak{o}_{K}^{\times}$satisfies $\overline{a_{1}}=a$. Now SR1, (5.1), (11.2), (12.1) and [5, 3.2 SR3], combined, show

$$
\kappa_{p}^{3}\left(g_{3}(\mathcal{J})\right)=g_{3}\left(\mathcal{J}_{1}\right) \neq 0
$$

forcing $g_{3}(\mathcal{J}) \neq 0$, as claimed.

References

[1] Kato, K.: Galois cohomology of complete discrete valued fields. LNM 967 (1982), 215-238.
[2] Kunz, E.: "Kähler differentials". Braunschweig-Wiesbaden: Vieweg, 1986.
[3] Milne, J. S.: Duality in the flat cohomology of a surface. Ann. Sci. E. N. S. 9 (1976), 171-202.
[4] Petersson, H. P.: Exceptional Jordan division algebras over a field with a discrete valuation. J. Reine Angew. Math. 274/275 (1975), 1-20.
[5] Petersson, H. P., Racine, M. L.: An elementary approach to the SerreRost invariant of Albert algebras. To appear in Indag. Math.
[6] Rost, M.: A mod 3 invariant for exceptional Jordan algebras. C. R. Acad. Sci. Paris Sér. I Math. 315 (1991), 823-827.
[7] Serre, J.-P.: "Corps locaux". Hermann, Paris (1962).
[8] Serre, J.-P.: Cohomologie Galoisienne: Progrès et Problèmes. Séminaire Bourbaki. 46ième année, 1993-94, $n^{0} 783$.
[9] Serre, J.-P.: Letter to H. P. Petersson, August 2, 1995.
[10] Teichmüller, O.: Diskret bewertete perfekte Körper mit unvollkommenen Restklassenkörpern. J. Reine Angew. Math. 176 (1936), 141-152.
[11] Witt, E.: p-Algebren und Pfaffsche Formen. Abh. Math. Sem. Univ. Hamburg 22 (1958), 308-315.

[^0]: ${ }^{1}$ Supported in part by a grant from NSERC.

