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0. Introduction. The authors [5] have recently developed an elementary
approach to the Serre-Rost invariant of Albert algebras that is valid in all
characteristics except 3. In this special case, Serre [9] has defined the invariant
in a different way and established its existence by using Rost’s original results
[6] in characteristic zero and reducing them mod 3. It is the purpose of
the present note to show that the elementary approach of [5] survives in
characteristic 3 as well once the necessary modifications of the cohomological
set-up as indicated in [8] have been carried out.

The authors wish to thank J.-P. Serre for valuable comments and his kind
permission to publish the results of [9].

1. The reader is assumed to be familiar with the terminology, notations and
results of [5]. We fix an arbitrary base field k of characteristic p > 0 and
write Ω = Ωk := Ωk/Z for the absolute universal differential algebra of k [2].
As a graded k-algebra, Ω =

⊕
q≥0

Ωq is just the exterior algebra of Ω1 = Ω1
k/Z,

the vector space of Kähler differentials of k over the integers; also, Ω comes
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equipped with a universal differentiation, which is an additive map d : Ω → Ω
of degree 1.

2. Setting Ωq = 0 for q < 0, we follow [8, 10.1] to recall that, for each q ≥ 1,
there is a natural p-linear map

γ : Ωq−1 −→ Ωq−1/dΩq−2

satisfying

γ(u
dx1

x1

∧ . . . ∧ dxq−1

xq−1

) = up dx1

x1

∧ . . . ∧ dxq−1

xq−1

mod dΩq−2

for u ∈ k, x1, . . . , xq−1 ∈ k×. According to Kato [1] and Milne [3], the group

Hq
p(k) := coker (γ − π),

π being the canonical projection Ωq−1 → Ωq−1/dΩq−2, is the analogue in
characteristic p of the groups Hq(k, µ⊗q−1

p ) in characteristic 6= p. Observe
that there is a natural epimorphism

Ωq−1 −→ Hq
p(k), ω 7−→ < ω >,

whose kernel is spanned by dΩq−2 and the elements

(up − u)
dx1

x1

∧ . . . ∧ dxq−1

xq−1

(u ∈ k, x1, . . . , xq−1 ∈ k×).

We have
H1

p (k) = k/℘k = H1(k,Z/pZ),

where ℘ is the Artin-Schreier map u 7→ up − u.

3. The groups Hq
p(k), q ≥ 1, are clearly functorial in k, so for every field

extension l/k we have a natural map, which we call restriction,

resl/k : Hq
p(k) −→ Hq

p(l).

Conversely, if l/k is separable of finite degree, we may identify Ωl = Ωk ⊗k l
canonically, and the trace form of l/k yields a map in the opposite direction,
which we call corestriction,

corl/k : Hq
p(l) −→ Hq

p(k),
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such that
corl/k ◦ resl/k = [l : k]1.

In particular, as in classical Galois cohomology, resl/k is injective unless p
divides [l : k]. Finally, if l/k is a finite Galois extension with Galois group G,
we conclude

resl/k ◦ corl/k =
∑

σ∈G

σ∗,

where σ∗ denotes the natural action of σ ∈ G on Hq
p(l).

4. The natural map from k× to k×/k×p will be symbolized by a 7→ < a >.
(This should not be confused with the map a 7→ [a] from k× to H1(k, µn) for
n not divisible by p, cf. [5, 1.6].) It is straightforward to check that there is
a unique Z-bilinear map

Hq
p(k)× (k×/k×p) −→ Hq+1

p (k)

satisfying

(< ω >, < a >) 7−→ < ω > · < a > = [ω, a) = < ω ∧ da

a
>

for ω ∈ Ωq−1, a ∈ k× (See [7], Chap XIV, §5 for similar expressions). This
map serves as a substitute for the cup product in cohomology. In particular,
it is stable under base change, and expressions like (< ω > · < a >)· < b >
are alternating in < a >, < b >∈ k×/k×p.

5. Let E/k be a cyclic field extension of degree p and σ a generator of its
Galois group. Then some y ∈ E has σy = y + 1, forcing x = yp − y ∈ k, and
[E, σ] = < x > in H1(k,Z/pZ) = H1

p (k). On the other hand, pBr(k), the
p-torsion part of the Brauer group, identifies with H2

p (k) in such a way that,
if D = (E/k, σ, c) is a cyclic algebra of degree p over k, we have

(5.1) [D] = [E, σ] · < c >

for the corresponding element in H2
p (k); see [11] for details.

6. Recall that if D is a central simple associative algebra of degree 3 over
k and a ∈ k× then V = D0 ⊕ D1 ⊕ D2, where Di = D (0 ≤ i ≤ 2), can
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be endowed with a quadratic Jordan algebra structure induced by the cubic
norm

N(x) := ND(x0) + aND(x1) + a−1ND(x2)− TD(x0x1x2)

for x = (x0, x1, x2) ∈ D and the base point 1 = (1D, 0, 0), 1D, ND, TD being
the unit element, reduced norm, reduced trace, respectively, of D. By this,
the first Tits construction, we obtain an Albert algebra, written as J (D, a).
Conversely, given any Albert algebra J over k, then either J ∼= J (D, a) as
above or there exists a quadratic field extersion K/k such that J ⊗k K ∼=
J (D, a) over K.
We can now state the main result of the paper.

7. Theorem. (Serre [9]). Let k be a field of characteristic 3. Then there exists
a unique invariant assigning to each Albert algebra J over k an element

g3(J ) ∈ H3
3 (k)

which only depends on the isomorphism class of J and satisfies the following
two conditions.

SR1 If J ∼= J (D, a) for some central simple associative algebra D of degree
3 over k and some a ∈ k× is a first Tits construction, then

g3(J ) = [D] · < a > ∈ H3
3 (k).

SR2 g3 is invariant under base change, i.e.,

g3(J ⊗k l) = resl/k(g3(J ))

for any field extension l/k.

Moreover, we have

SR3 g3 characterizes Albert division algebras, i.e., J is a division algebra iff
g3(J ) 6= 0.

8. We first prove existence and uniqueness of the invariant g3. To do so, we
briefly summarize the contents of sections 3 and 4 in [5] and indicate the
minor changes nesessary in characteristic 3.
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If we define

(8.1) g3(J ) := [D] · < a >∈ H3
3 (k)

for a first Tits construction J ∼= J (D, a) as in 6. and

(8.2) g3(J ) := −corK/k(g3(J ⊗k K))

for any separable quadratic field extension K/k such that J ⊗k K is a first
Tits construction then, as in [5, 3.4 - 3.7], one can show that the invariant is
unique and that (8.2) is well defined provided (8.1) is.

Next we need the characteristic-3-version of [5, 4.3]:

9. Lemma. Assume char k = 3, let D be a central simple associative k-
Algebra of degree 3 and b ∈ ND(D×). Then

[D] · < b > = 0.

Proof. We may assume that D is a division algebra and, by Zariski density,
choose u, y ∈ D× satisfying ND(u) = b, TD(y−1) 6= 0 6= TD(yu). This implies
b = ND(y−1)ND(yu), so by virtue of bilinearity (4.) we are allowed to assume
that u generates an étale subalgebra of rank 3 in D. But then the proof may
be completed in exactly the same manner as the one of [5, 4.3].

10. We now return to 8. and prove that (8.1) is well defined by considering a
first Tits construction J as in 6, which, because of Lemma 9, may assumed
to be a division algebra. Choosing internally a Jordan subalgebra A ⊂ J ,
a central associative division algebra D of degree 3 over k, an isomorphism
η : D+ ∼−→ A and an element x ∈ J which is associated with (D, η) [5, 4.4],
it follows as in the proof of [5, 4.8] that

g3(J , A) := [D] · < NJ (x) >

depends only on A. (Observe that Lemma 9 takes care of the restriction on
the characteristic in [5, 4.8], thereby removing the characteristic restrictions
from [5, 4.12c)] and [5, 4.14] also.) It remains to show g3(J , A) = g3(J , A′)
for any subalgebra A′ ⊂ J having the form A′ ∼= D′+ for some central simple
associative k-algebra D′ of degree 3. To this end we may assume that A,A′
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contain a common cyclic cubic subfield [5, 4.9] (the proof of this result works
also in characteristic 3 since we are allowed to start with arbitrary separable
subfields). Then [5, 4.16] produces a chain of neighbors connecting A with
A′, and [5, 4.14] shows g3(J , A) = g3(J , A′), as claimed.

11. In view of 8. and 10., the only part of Theorem 7 demanding clarification
is SR3. The easy direction follows from Lemma 9, so it remains to show
that, conversely, J being a division algebra implies g3(J ) 6= 0. To do so,
we will follow Serre’s argument in [9]. Let k be a field of characteristic p >
0. By results of Teichmüller [10], there is a local field K0 of characteristic
zero having residue field K0 = k and the property that v0(p) = 1 where
v0 : K×

0 → Z is the valuation of K0. Letting ζ be a primitive p-th root of
unity, K = K0(ζ) is totally ramified of degree p− 1 over K0 having b = ζ− 1
as a local parameter. Write oK for the valuation ring of K and u 7→ u for
the natural map oK → k. Among the various results of Kato [1] relating the
Galois cohomology of local fields to their residue fields, we only need the
existence of natural homomorphisms (cf. [1, Theorem 2 (i)])

κq
p : Hq

p(k) −→ Hq(K,Z/pZ)

satisfying

(11.1) κ1
p(< u >) = [1 + bpu] (u ∈ oK),

(11.2) κq+1
p (< ω >)· < a >) = κq

p(< ω >) ∪ [a] (q ≥ 1, ω ∈ Ωq−1
k , a ∈ o×K).

12. Keeping the situation described in 11., let E/K be an unramified cyclic
field extension of degree p and σ a generator of its Galois group. Then one
finds elements x ∈ o×K , y ∈ o×E −K satisfying

(1 + by)p = 1 + bpx , σy = y + 1 , yp − y = x.

By 5. and (11.1), this implies κ1
p([E, σ]) = [E, σ], which in turn, combining

(5.1) with (11.2), yields

(12.1) κ2
p([D]) = [D]

for any unramified cyclic division algebra D of degree p over k.
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13. Assuming char k = 3 again, we can now complete the proof of SR3 by
showing g3(J ) 6= 0 for any Albert division algebra J over k. As usual, we
may assume that J ∼= J (D, a) is a first Tits construction as in SR1. Using
11. and 12., we let J1 be the unique unramified Albert division algebra over
K having J1

∼= J [4, Theorem 2]. By [4, Proposition 4], J1
∼= J (D1, a1)

where D1 is the unique unramified associative division algebra of degree 3
over K having D1

∼= D and a1 ∈ o×K satisfies a1 = a. Now SR1, (5.1), (11.2),
(12.1) and [5, 3.2 SR3], combined, show

κ3
p(g3(J )) = g3(J1) 6= 0,

forcing g3(J ) 6= 0, as claimed.
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