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Exceptional simple Jordan algebras and Galois cohomology

Joseph C. Ferrar and Holger P. Petersson

Introduction Exceptional simple Jordan algebras have been classified a long time
ago. It is known since the work of Tits ([J]) and McCrimmon ([M2]) that they may
all be obtained by one of the two Tits constructions. The most delicate part of
the proof is to establish the following fundamental fact: Given a central simple
exceptional Jordan algebra J containing a subalgebra of the form A+, the Jordan
algebra determined by a central simple associative algebra A of degree 3, there
exists a nonzero scalar µ in the base field such that the identity transformation of
A+ extends to an isomorphism from J onto the first Tits construction J (A, µ).
In [J], [M2] but also in [Sp] and, more generally, in [PR], this is accomplished by a
careful analysis of the way in which A+ sits in J . The aim of the present note is
to give a different proof, reducing Jordan theory to a minimum and relying instead
on elementary facts from Galois cohomology.

1. We begin by recalling from [M1] the basic features of the first Tits construc-
tion. Let k be a field, remaining fixed throughout this paper. For a central simple
associative algebra A of degree 3 over k and a nonzero scalar µ0 ∈ k, we put

J0 = J (A, µ0) = A⊕ A⊕ A

as a vector space over k and define a cubic form N (the norm), a nondegenerate
symmetric bilinear form T (the trace) as well as a quadratic map ] (the adjoint)
on J0 according to the rules

N(x) = NA(a0) + µ0NA(a1) + µ−1
0 NA(a2)− TA(a0 a1 a2),

T (x, y) = TA(a0, b0) + TA(a1, b2) + TA(a2, b1),

x] = (a]
0 − a1a2, µ

−1
0 a]

2 − a0a1, µ0a
]
1 − a2a0)

for
x = (a0, a1, a2), y = (b0, b1, b2) ∈ J0,

the symbols NA, TA, ] on the right referring to the (reduced) norm, trace, adjoint,
respectively, of A. Then, setting x× y = (x + y)] − x] − y], J0 becomes a central
simple exceptional Jordan algebra over k under the U -operator

Uxy = T (x, y)x− x] × y

and the identity element 1 = (1A, 0, 0). Note that A+, via the first summand,
identifies with a subalgebra of J0.
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2. A linear bijection J0 → J0 is an automorphism if and only if it preserves the
norm and the identity element. For example, setting

ΓA = {v ∈ A : NA(v) = 1}
and picking v ∈ ΓA, the rule

(a0, a1, a2) 7→ (a0, a1v
−1, v a2)

determines an automorphism ι(v) of J0 fixing A+. On the other hand, the auto-
morphism group of (J0, A

+), i. e., the group of automorphism of J0 stabilizing A+,
will be denoted by Aut (J0, A

+). Via restriction, we obtain a canonical homomor-
phismus ρ : Aut (J0, A

+) → Aut A+.

3. Proposition The short sequence

1 → ΓA →ι Aut (J0, A
+) →ρ Aut A+ → 1

is exact.

Proof. ι is clearly injective and ρ◦ ι = 1. Hence we have exactness on the left, and
in order to prove exactness in the middle, it suffices to show that any automorphism
η of J0 fixing A+ has the form ι(v) for some v ∈ ΓA. Since the elements x of the
second (resp. third) summand of J0 may be characterized intrinsically by the condi-
tion that they are orthogonal to A+ relative to T and satisfy a×(b×x) = −(ab)×x
(resp. −(ba) × x) for all a, b ∈ A+ [M2, p. 308], both summands are stabilized by
η, so there are linear bijections ηi : A → A (i = 1, 2) having (a0, a1, a2 ∈ A).
η((a0, a1, a2)) = (a0, η1(a1), η2(a2)) Expanding η(a0 × (0, a1, a2)) in two different
ways shows η1(a0a1) = a0 η1(a1),
η2(a2 a0) = η(a2)a0. Hence there are v, w ∈ A× such that η1(a) = aw, η2(a) = va

for all a ∈ A. Comparing the first components of η((0, 1A, 1A)]) = η((0, 1A, 1A))
]

now yields w = v−1, and since η preserves the norm we have v ∈ ΓA, forcing
η = ι(v), as claimed. It remains to prove exactness on the right, i.e., that ρ is
surjective. So let ϕ ∈ Aut A+. Then ϕ is either an automorphism or an antiau-
tomorphism of A. In the first case, the rule (a0, a1, a2) 7→ (ϕ(a0), ϕ(a1), ϕ(a2))
extends ϕ to an automorphism of (J0, A

+). In the second case, A is necessarily
split, so some u ∈ A+ has NA(u) = µ2

0, and we obtain an extension of ϕ to an
automorphism of (J0, A

+) via (a0, a1, a2) 7→ (ϕ(a0), ϕ(a2)u
−1, u ϕ(a1)).

2

4. We now fix a separable closure ks of k, with absolute Galois group
G = Gal(ks/k). Scalar extensions from k to ks will be indicated by a subscript “s”.
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Then we have two short exact sequences of G-groups, one coming from 3.,

1 → ΓAs → Aut (J0s, A
+
s ) → Aut A+

s → 1,

the other coming from the reduced norm of A,

1 → ΓAs → A×
s → k×s → 1.

Passing to the “long” exact sequences of nonabelian cohomology ([S1] VII Propo-
sition 1) and observing H1(k, A×

s ) = 1 ([K], 1.7 Ex. 1), we obtain the following
diagram with exact rows and columns (in the category of pointed sets):

?

?

?

1

H1(k, ΓAs)

δ

k×

NA

A×

- - -H1(k, Aut (J0s, A
+
s )) H1(k, Aut A+

s )
ι ρ

Here the elements of H1(k, Aut (J0s, A
+
s )) have a natural interpretation as (iso-

morphism classes of) k-forms of (J0, A
+), i.e., as pairs (J ,J ′) of k-algebras that

become isomorphic (in the obvious sense) to (J0s, A
+
s ) when extending scalars from

k to ks. A similar interpretation prevails for H1(k, Aut A+
s ), and under these in-

terpretations, ρ corresponds to the assignment (J ,J ′) 7→ J ′.

5. Lemma Let µ ∈ k×. Then ι ◦ δ(µ) ∈ H1(k, Aut (J0s, A
+
s )) corresponds to the

k-form (J (A, µµ0), A
+) of (J0, A

+).

Proof. Choose an element v ∈ A×
s satisfying NA(v) = µ. Then α : G → ΓAs , σ 7→

α(σ) = v−1 vσ , is a 1-cocycle representing δ(µ) ∈ H1(k, ΓAs). Hence β : G →
Aut (J0s, A

+
s ) given by

β(σ)((a0, a1, a2)) = (a0, a1 vσ −1v, v−1 vσ a2)

for σ ∈ G, a0, a1, a2 ∈ A is a 1-cocycle representing ι◦δ(µ) ∈ H1(k, Aut (J0s, A
+
s )).

Now define γ ∈ GL(J0s) by γ((a0, a1, a2)) = (a0, a1v
−1, va2). Then β(σ) =
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γ−1 σγ (σ ∈ G), and setting J = J (A, µµ0), it is readily checked that γ :
(J0s, A

+
s ) → (Js, A

+
s ) preserves norms and units, hence is an isomorphism. There-

fore (J , A+) is the k-form of (J0, A
+) corresponding to ι ◦ δ(µ). 2

We are now ready to establish our main result.

6. Theorem (Tits [J, IX Theorem 22], McCrimmon [M2, Theorem 8]) Let J
be a central simple exceptional Jordan algebra over k containing a subalgebra of
the form A+, where A is a central simple associative k-algebra of degree 3. Then
there exists a µ ∈ k× such that the identity transformation of A+ extends to an
isomorphism from J onto J (A, µ).

Proof. In our previous discussion we set µ0 = 1. Given a reduced exceptional
simple Jordan algebra K, a theorem of Jacobson (see [J, IX Theorem 3], where the
restriction to fields of characteristic not two can easily be avoided) asserts that any
homomorphism from any simple reduced subalgebra of degree 3 to K extends to an
automorphism. Therefore (J , A+) is a k-form of (J0, A

+) which, when interpreted
in H1(k, Aut (J0, A

+), belongs to kernel of ρ (4.), hence to the image of ι. But δ
is surjective, so by 5., some µ ∈ k× has (J (A, µ), A+) ∼= (J , A+), as claimed. 2

7. Remark. Every exceptional simple Jordan algebra J admits an important
invariant, its trace form, called the “invariant mod 2” by Serre ([S2]). In [S2] Serre
also attaches a certain decomposable element of H3(k,Z/Z3) to J and conjectures
that this is an invariant as well, called the “invariant mod 3”. This conjecture has
recently been settled affirmatively by Rost ([R]). However, a further conjecture of
Serre’s (loc. cit.) that exceptional simple Jordan algebras are classified by their
invariants mod 2 and 3 is still unsolved.
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