Exceptional simple Jordan algebras and Galois cohomology

Joseph C. Ferrar and Holger P. Petersson

Introduction Exceptional simple Jordan algebras have been classified a long time ago. It is known since the work of Tits ([J]) and McCrimmon ([M2]) that they may all be obtained by one of the two Tits constructions. The most delicate part of the proof is to establish the following fundamental fact: Given a central simple exceptional Jordan algebra \mathcal{J} containing a subalgebra of the form A^{+}, the Jordan algebra determined by a central simple associative algebra A of degree 3 , there exists a nonzero scalar μ in the base field such that the identity transformation of A^{+}extends to an isomorphism from \mathcal{J} onto the first Tits construction $\mathcal{J}(A, \mu)$. In [J], [M2] but also in [Sp] and, more generally, in [PR], this is accomplished by a careful analysis of the way in which A^{+}sits in \mathcal{J}. The aim of the present note is to give a different proof, reducing Jordan theory to a minimum and relying instead on elementary facts from Galois cohomology.

1. We begin by recalling from [M1] the basic features of the first Tits construction. Let k be a field, remaining fixed throughout this paper. For a central simple associative algebra A of degree 3 over k and a nonzero scalar $\mu_{0} \in k$, we put

$$
\mathcal{J}_{0}=\mathcal{J}\left(A, \mu_{0}\right)=A \oplus A \oplus A
$$

as a vector space over k and define a cubic form N (the norm), a nondegenerate symmetric bilinear form T (the trace) as well as a quadratic map \sharp (the adjoint) on \mathcal{J}_{0} according to the rules

$$
\begin{aligned}
N(x) & =N_{A}\left(a_{0}\right)+\mu_{0} N_{A}\left(a_{1}\right)+\mu_{0}^{-1} N_{A}\left(a_{2}\right)-T_{A}\left(a_{0} a_{1} a_{2}\right), \\
T(x, y) & =T_{A}\left(a_{0}, b_{0}\right)+T_{A}\left(a_{1}, b_{2}\right)+T_{A}\left(a_{2}, b_{1}\right), \\
x^{\sharp} & =\left(a_{0}^{\sharp}-a_{1} a_{2}, \mu_{0}^{-1} a_{2}^{\sharp}-a_{0} a_{1}, \mu_{0} a_{1}^{\sharp}-a_{2} a_{0}\right)
\end{aligned}
$$

for

$$
x=\left(a_{0}, a_{1}, a_{2}\right), y=\left(b_{0}, b_{1}, b_{2}\right) \in \mathcal{J}_{0},
$$

the symbols N_{A}, T_{A}, \sharp on the right referring to the (reduced) norm, trace, adjoint, respectively, of A. Then, setting $x \times y=(x+y)^{\sharp}-x^{\sharp}-y^{\sharp}, \mathcal{J}_{0}$ becomes a central simple exceptional Jordan algebra over k under the U-operator

$$
U_{x} y=T(x, y) x-x^{\sharp} \times y
$$

and the identity element $1=\left(1_{A}, 0,0\right)$. Note that A^{+}, via the first summand, identifies with a subalgebra of \mathcal{J}_{0}.
2. A linear bijection $\mathcal{J}_{0} \rightarrow \mathcal{J}_{0}$ is an automorphism if and only if it preserves the norm and the identity element. For example, setting

$$
\Gamma_{A}=\left\{v \in A: N_{A}(v)=1\right\}
$$

and picking $v \in \Gamma_{A}$, the rule

$$
\left(a_{0}, a_{1}, a_{2}\right) \mapsto\left(a_{0}, a_{1} v^{-1}, v a_{2}\right)
$$

determines an automorphism $\iota(v)$ of \mathcal{J}_{0} fixing A^{+}. On the other hand, the automorphism group of $\left(\mathcal{J}_{0}, A^{+}\right)$, i. e., the group of automorphism of \mathcal{J}_{0} stabilizing A^{+}, will be denoted by Aut $\left(\mathcal{J}_{0}, A^{+}\right)$. Via restriction, we obtain a canonical homomorphismus ρ : Aut $\left(\mathcal{J}_{0}, A^{+}\right) \rightarrow$ Aut A^{+}.

3. Proposition The short sequence

$$
1 \rightarrow \Gamma_{A} \rightarrow \text { Aut }\left(\mathcal{J}_{0}, A^{+}\right) \vec{\rho} \text { Aut } A^{+} \rightarrow 1
$$

is exact.
Proof. ι is clearly injective and $\rho \circ \iota=1$. Hence we have exactness on the left, and in order to prove exactness in the middle, it suffices to show that any automorphism η of \mathcal{J}_{0} fixing A^{+}has the form $\iota(v)$ for some $v \in \Gamma_{A}$. Since the elements x of the second (resp. third) summand of \mathcal{J}_{0} may be characterized intrinsically by the condition that they are orthogonal to A^{+}relative to T and satisfy $a \times(b \times x)=-(a b) \times x$ (resp. $-(b a) \times x)$ for all $a, b \in A^{+}$[M2, p. 308], both summands are stabilized by η, so there are linear bijections $\eta_{i}: A \rightarrow A(i=1,2)$ having $\left(a_{0}, a_{1}, a_{2} \in A\right)$. $\eta\left(\left(a_{0}, a_{1}, a_{2}\right)\right)=\left(a_{0}, \eta_{1}\left(a_{1}\right), \eta_{2}\left(a_{2}\right)\right)$ Expanding $\eta\left(a_{0} \times\left(0, a_{1}, a_{2}\right)\right)$ in two different ways shows $\eta_{1}\left(a_{0} a_{1}\right)=a_{0} \eta_{1}\left(a_{1}\right)$,
$\eta_{2}\left(a_{2} a_{0}\right)=\eta\left(a_{2}\right) a_{0}$. Hence there are $v, w \in A^{\times}$such that $\eta_{1}(a)=a w, \eta_{2}(a)=v a$ for all $a \in A$. Comparing the first components of $\eta\left(\left(0,1_{A}, 1_{A}\right)^{\sharp}\right)=\eta\left(\left(0,1_{A}, 1_{A}\right)\right)^{\sharp}$ now yields $w=v^{-1}$, and since η preserves the norm we have $v \in \Gamma_{A}$, forcing $\eta=\iota(v)$, as claimed. It remains to prove exactness on the right, i.e., that ρ is surjective. So let $\varphi \in$ Aut A^{+}. Then φ is either an automorphism or an antiautomorphism of A. In the first case, the rule $\left(a_{0}, a_{1}, a_{2}\right) \mapsto\left(\varphi\left(a_{0}\right), \varphi\left(a_{1}\right), \varphi\left(a_{2}\right)\right)$ extends φ to an automorphism of $\left(\mathcal{J}_{0}, A^{+}\right)$. In the second case, A is necessarily split, so some $u \in A^{+}$has $N_{A}(u)=\mu_{0}^{2}$, and we obtain an extension of φ to an automorphism of $\left(\mathcal{J}_{0}, A^{+}\right)$via $\left(a_{0}, a_{1}, a_{2}\right) \mapsto\left(\varphi\left(a_{0}\right), \varphi\left(a_{2}\right) u^{-1}, u \varphi\left(a_{1}\right)\right)$.
4. We now fix a separable closure k_{s} of k, with absolute Galois group $G=\operatorname{Gal}\left(k_{s} / k\right)$. Scalar extensions from k to k_{s} will be indicated by a subscript " s ".

Then we have two short exact sequences of G-groups, one coming from 3.,

$$
1 \rightarrow \Gamma_{A_{s}} \rightarrow \text { Aut }\left(\mathcal{J}_{0 s}, A_{s}^{+}\right) \rightarrow \text { Aut } A_{s}^{+} \rightarrow 1
$$

the other coming from the reduced norm of A,

$$
1 \rightarrow \Gamma_{A_{s}} \rightarrow A_{s}^{\times} \rightarrow k_{s}^{\times} \rightarrow 1 .
$$

Passing to the "long" exact sequences of nonabelian cohomology ([S1] VII Proposition 1) and observing $H^{1}\left(k, A_{s}^{\times}\right)=1([K], 1.7$ Ex. 1), we obtain the following diagram with exact rows and columns (in the category of pointed sets):

Here the elements of $H^{1}\left(k\right.$, Aut $\left.\left(\mathcal{J}_{0 s}, A_{s}^{+}\right)\right)$have a natural interpretation as (isomorphism classes of) k-forms of $\left(\mathcal{J}_{0}, A^{+}\right)$, i.e., as pairs $\left(\mathcal{J}, \mathcal{J}^{\prime}\right)$ of k-algebras that become isomorphic (in the obvious sense) to $\left(\mathcal{J}_{0 s}, A_{s}^{+}\right)$when extending scalars from k to k_{s}. A similar interpretation prevails for $H^{1}\left(k\right.$, Aut $\left.A_{s}^{+}\right)$, and under these interpretations, ρ corresponds to the assignment $\left(\mathcal{J}, \mathcal{J}^{\prime}\right) \mapsto \mathcal{J}^{\prime}$.
5. Lemma Let $\mu \in k^{\times}$. Then $\iota \circ \delta(\mu) \in H^{1}\left(k\right.$, Aut $\left.\left(\mathcal{J}_{0 s}, A_{s}^{+}\right)\right)$corresponds to the k-form $\left(\mathcal{J}\left(A, \mu \mu_{0}\right), A^{+}\right)$of $\left(\mathcal{J}_{0}, A^{+}\right)$.

Proof. Choose an element $v \in A_{s}^{\times}$satisfying $N_{A}(v)=\mu$. Then $\alpha: G \rightarrow \Gamma_{A_{s}}, \sigma \mapsto$ $\alpha(\sigma)=v^{-1} \sigma v$, is a 1-cocycle representing $\delta(\mu) \in H^{1}\left(k, \Gamma_{A_{s}}\right)$. Hence $\beta: G \rightarrow$ Aut $\left(\mathcal{J}_{0 s}, A_{s}^{+}\right)$given by

$$
\beta(\sigma)\left(\left(a_{0}, a_{1}, a_{2}\right)\right)=\left(a_{0}, a_{1} \sigma_{\left.v^{-1} v, v^{-1} \sigma_{v a_{2}}\right)}\right.
$$

for $\sigma \in G, a_{0}, a_{1}, a_{2} \in A$ is a 1-cocycle representing $\iota \circ \delta(\mu) \in H^{1}\left(k\right.$, Aut $\left.\left(\mathcal{J}_{0 s}, A_{s}^{+}\right)\right)$. Now define $\gamma \in \operatorname{GL}\left(\mathcal{J}_{0 s}\right)$ by $\gamma\left(\left(a_{0}, a_{1}, a_{2}\right)\right)=\left(a_{0}, a_{1} v^{-1}, v a_{2}\right)$. Then $\beta(\sigma)=$
$\gamma^{-1 \sigma} \gamma(\sigma \in G)$, and setting $\mathcal{J}=\mathcal{J}\left(A, \mu \mu_{0}\right)$, it is readily checked that γ : $\left(\mathcal{J}_{0 s}, A_{s}^{+}\right) \rightarrow\left(\mathcal{J}_{s}, A_{s}^{+}\right)$preserves norms and units, hence is an isomorphism. Therefore $\left(\mathcal{J}, A^{+}\right)$is the k-form of $\left(\mathcal{J}_{0}, A^{+}\right)$corresponding to $\iota \circ \delta(\mu)$.

We are now ready to establish our main result.
6. Theorem (Tits [J, IX Theorem 22], McCrimmon [M2, Theorem 8]) Let \mathcal{J} be a central simple exceptional Jordan algebra over k containing a subalgebra of the form A^{+}, where A is a central simple associative k-algebra of degree 3. Then there exists a $\mu \in k^{\times}$such that the identity transformation of A^{+}extends to an isomorphism from \mathcal{J} onto $\mathcal{J}(A, \mu)$.

Proof. In our previous discussion we set $\mu_{0}=1$. Given a reduced exceptional simple Jordan algebra \mathcal{K}, a theorem of Jacobson (see [J, IX Theorem 3], where the restriction to fields of characteristic not two can easily be avoided) asserts that any homomorphism from any simple reduced subalgebra of degree 3 to \mathcal{K} extends to an automorphism. Therefore $\left(\mathcal{J}, A^{+}\right)$is a k-form of $\left(\mathcal{J}_{0}, A^{+}\right)$which, when interpreted in $H^{1}\left(k\right.$, Aut $\left(\mathcal{J}_{0}, A^{+}\right)$, belongs to kernel of $\rho(4$.$) , hence to the image of \iota$. But δ is surjective, so by 5 ., some $\mu \in k^{\times}$has $\left(\mathcal{J}(A, \mu), A^{+}\right) \cong\left(\mathcal{J}, A^{+}\right)$, as claimed.
7. Remark. Every exceptional simple Jordan algebra \mathcal{J} admits an important invariant, its trace form, called the "invariant mod 2" by Serre ([S2]). In [S2] Serre also attaches a certain decomposable element of $H^{3}(k, \mathbf{Z} / \mathbf{Z} 3)$ to \mathcal{J} and conjectures that this is an invariant as well, called the "invariant mod 3". This conjecture has recently been settled affirmatively by Rost $([R])$. However, a further conjecture of Serre's (loc. cit.) that exceptional simple Jordan algebras are classified by their invariants mod 2 and 3 is still unsolved.

References

[J] N. Jacobson. "Structure and representations of Jordan algebras". Amer. Math. Soc. Coll. Publ. XXXIX, Providence, RI, 1968.
[K] M. Kneser. "Lectures on Galois cohomology of classical groups". Tata Institute of Fundamental Research, Bombay, 1969.
[M1] K. McCrimmon. The Freudenthal-Springer-Tits constructions of exceptional Jordan algebras. Trans. Amer. Math. Soc. 139 (1969), 495-510.
[M2] - The Freudenthal-Springer-Tits constructions revisited. Trans. Amer. Math. Soc. 148 (1970), 293-314.
[PR] H. P. Petersson and M. L. Racine. Classification of algebras arising from the Tits process. J. Algebra 98 (1986), 244-279.
[R] M. Rost A (mod 3) invariant for exceptional Jordan algebras. C. R. Acad. Sci. Paris, Série I (1991), 823-827.
[S1] J-P. Serre. "Corps locaux". Actualités scientifiques et industrielle 1296, Hermann, Paris, 1968.
[S2] - "Résumé des cours de l'année 1990-1991". Annuaire du College de France (1991).
[Sp] T. A. Springer. "Jordan algebras and algebraic groups". Ergebnisse der Mathematik und ihrer Grenzgebiete 75, SpringerVerlag, Berlin-Heidelberg-New York 1973.

Joseph C. Ferrar
Departement of Mathematics
Ohio State University
Columbus, OH
USA

Holger P. Petersson
Fachbereich Mathematik
Fernuniversität
Lützowstraße 125
D- 5800 Hagen
Bundesrepublik Deutschland

