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Abstract

Classical results, like the construction of a 3-fold Pfister form attached to any central simple
associative algebra of degree 3 with involution of the second kind [HKRT], or the Skolem-
Noether theorem for Albert algebras and their 9-dimensional separable subalgebras [PaST],
which originally were derived only over fields of characteristic not 2 (or 3), are extended here
to base fields of arbitrary characteristic. The methods we use are quite different from the ones
originally employed and, in many cases, lead to expanded versions of the aforementioned results
that continue to be valid in any characteristic.

0. Introduction

Thanks to their close connection with the Galois cohomology of classical and exceptional groups,
Jordan algebras of degree 3 have attracted considerable attention over the last couple of years. The
results on the (cohomological) invariants mod 2, based to a large extent on the construction of
Haile-Knus-Rost-Tignol [HKRT] attaching a 3-fold Pfister form to any central simple associative
algebra of degree 3 with involution of the second kind, are particularly noteworthy in this context,
as is the Skolem-Noether theorem of Parimala-Sridharan-Thakur [PaST] for Albert algebras and
their 9-dimensional separable subalgebras. Invariably, however, these results, a systematic account
of which may be found in [KMRT, §§19, 30, 37-40], are confined to base fields of characteristic not
2; sometimes even characteristic 3 has to be excluded.

In the present paper, an approach to the subject will be developed that yields expanded versions of
the aforementioned results over fields of arbitrary characteristic. The methodological framework of
our approach is mainly Jordan-theoretic in nature and relies heavily on the Tits process [PR3] for
Jordan algebras of degree 3. Another key ingredient is the explicit, characteristic-free description
due to Petersson-Racine ([PR6, 1.8, 2.4] and [PR7, 3.8, 3.9]) of the 3-fold Pfister form attached
to a central simple associative algebra of degree 3 with involution of the second kind. Finally,
the insight, which goes back to Racine [Ra1], that in this generality the role usually played by
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the bilinear trace form is taken over by the quadratic trace (cf. 1.4 for the definition) becomes a
frequently recurring theme in our investigation.

With special emphasis on those results which seem to be new even when the characteristic is
not 2, the content of the paper may be summarized as follows. After covering some background
material in Section 1, we proceed to investigate distinguished involutions in the next two sections
and show in particular that an involution τ of the second kind on a simple associative algebra B
of degree 3 is distinguished if and only if the quadratic trace of J = H(B, τ), the Jordan algebra
of τ -symmetric elements in B, becomes isotropic on the orthogonal complement of any cubic étale
subalgebra of J (2.7). We also establish Albert’s [A] classical result yielding distinguished cubic
subfields of symmetric elements in central simple associative algebras of degree 3 with distinguished
involution in all characteristics (3.1). Our proof is different from the one of Haile-Knus [HK] and
Villa [KMRT, Ex 19.9] and provides additional information in characteristic 3 (3.9). Section 4 is
devoted to Albert algebras and the characteristic-free interpretation of their invariants mod 2 in
terms of Pfister forms. The main results are 4.4 and 4.9, characterizing in various ways Albert
algebras with vanishing 5- (resp. 3-) invariant mod 2. As an application of 4.4, we obtain examples
of Albert division algebras which are isotopic but not isomorphic (4.7). The proof of the Skolem-
Noether theorem of [PaST] in arbitrary characteristic will be taken up in Section 5. The paper
concludes in 6.5 with comparing the two descriptions of the 3-fold Pfister form attached to an
involution given by [HKRT, Proposition 19] (see also [KMRT, (19:25)] and by [PR3, 3.8, 3.9] (see
3.3 below).

1. Background material

1.0 Throughout this paper, we fix a base field k of arbitrary characteristic. All algebras considered
in the sequel are assumed to be finite-dimensional and to contain an identity. The set of invertible
elements in a structure A will be denoted by A×, whenever this makes sense. We systematically
write Q(x, y) = Q(x+y)−Q(x)−Q(y) for the bilinearization of a quadratic map Q. Basic concepts
and facts from the theory of (quadratic) Jordan algebras will be taken for granted, the standard
reference being Jacobson [J2]. Given a Jordan algebra J , we write k[x] for the subalgebra of J
generated by x. The generic norm of J [JK] will always be viewed as a polynomial function [Rb],
acting, mostly under the same notation, on every base change of J in a functorial manner; dito for
the other coefficients of the generic minimum polynomial.

The main purpose of this section is to collect a few results scattered in the literature that are
indispensable for understanding the subsequent development. Proofs will be omitted most of the
time.

1.1 Quadratic forms versus symmetric bilinear forms. Since we do not exclude character-
istic 2, we have to distinguish carefully between quadratic forms on the one hand and symmetric
bilinear forms on the other. Our basic reference for both are Micali-Revoy [MR] and Scharlau
[Scha]. They will be identified only if characteristic 2 has been expressly ruled out. Given a sym-
metric matrix S of size n, the symmetric bilinear form induced by S on n-dimensional column space
kn will be denoted by 〈S〉. If S = diag(γ1, . . . , γn) is diagonal, we write 〈γ1, . . . , γn〉 = 〈S〉. The
hyperbolic plane as a binary quadratic form will be denoted by h. A quadratic form is said to be
nonsingular if its bilinearization is nondegenerate in the usual sense. For example, the hyperbolic
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plane h is nonsingular but, for char k = 2 and α ∈ k, the one-dimensional quadratic form [α] is not,
even if α 6= 0. The Witt classes of nonsingular quadratic forms make up the Witt group of k, which
is a module over its Witt ring, consisting of the Witt classes of nondegenerate symmetric bilinear
forms; the corresponding module action is given by the tensor product of a symmetric bilinear form
β and a quadratic form q yielding a quadratic form β . q over k. We also recall that Witt’s theorem
holds for nonsingular quadratic forms, though is doesn’t for symmetric bilinear ones even if they
are nondegenerate.

1.2 Quadratic étale algebras. Quadratic étale k-algebras are classified by H1(k,Z/2Z); in fact,
this group will be identified systematically with the group of square classes in k× for char k 6= 2 and
with the cokernel of the Artin-Schreier map α 7→ α + α2 otherwise. The element of H1(k,Z/2Z)
corresponding to a quadratic étale k-algebra L will be denoted by δ(L/k). Conversely, we write
k{δ} for the quadratic étale k-algebra corresponding to δ ∈ H1(k,Z/2Z). Recall that, writing
dL/k ∈ k×/k×2 for the ordinary discriminant of L, we have dL/k = δ(L/k) for char k 6= 2 but
dL/k = 1 for char k = 2.

1.3 Associates of quadratic forms. Let q : V → k be a nonsingular quadratic form with base
point e ∈ V , so q(e) = 1. Given δ ∈ H1(k,Z/2Z) represented by d ∈ k× for char k 6= 2 (resp. d ∈ k
for char k = 2), qδ(x) = dq(x) + 1−d

4 q(e, x)2 (char k 6= 2), qδ(x) = q(x) + dq(e, x)2 (char k = 2)
defines a nonsingular quadratic form qδ : V → k with base point e which up to isometry neither
depends on d nor on e [PR1, Proposition 3.1] and is called the δ-associate of q. For a discussion of
this concept in a much more general setting, see Loos [Lo]. By [PR6, 2.7] we have

(q ⊥ q′)δ
∼= qδ ⊥ 〈d′〉. q′,(1.3.1)

where q′ is another nonsingular quadratic form and d′ = d (char k 6= 2), d′ = 1 (char k = 2); also,

(qδ)δ′ ∼= qδ+δ′(1.3.2)

for δ, δ′ ∈ H1(k,Z/2Z). Moreover, writing NL for the norm of an étale k-algebra L, we recall

(Nk{δ})δ′ ∼= Nk{δ+δ′}(1.3.3)

from [PR6, 2.9]. Finally,

〈dL/k〉. NL
∼= 〈−1〉. NL(1.3.4)

for any quadratic étale k-algebra L.

1.4 Cubic norm structures. Following McCrimmon [McC], and adopting the terminology of
Petersson-Racine [PR3], we define a cubic norm structure over k as a quadruple (V, N, ], 1) con-
sisting of a finite-dimensional vector space V over k, a cubic form N : V −→ k (the norm), a
quadratic map ]: V −→ V, x 7−→ x], (the adjoint) and a distinguished element 1 ∈ V (the base
point) such that the relations x]] = N(x)x (the adjoint identity), N(1) = 1, T (x], y) = (DN)(x)y
(the directional derivative of N at x in the direction y), 1] = 1, 1 × y = T (y)1 − y hold under
all scalar extensions, where T := −(D2 log N)(1) : V × V −→ k ist the associated trace form,
x × y = (x + y)] − x] − y] is the bilinearization of the adjoint and T (y) = T (y, 1). Then the
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U -operator Uxy = T (x, y)x− x] × y and the base point 1 give V the structure of quadratic Jordan
algebra denoted by J(V, N, ], 1). Among the results obtained in [McC], the following are partic-
ularly noteworthy in the present context. Writing S : J −→ k for the quadratic form given by
S(x) = T (x]), we have the relation

x] = x2 − T (x)x + S(x)1.(1.4.1)

Isomorphisms between Jordan algebras of cubic norm structures with nondegenerate associated
trace forms are the same as bijective linear maps preserving norms and base points. An element
y ∈ J is invertible if and only if N(y) 6= 0, in which case J (y), the y-isotope of J , again arises from
a cubic norm structure in an explicit manner. J satisfies not only the cubic equation

x3 − T (x)x2 + S(x)x−N(x)1 = 0(1.4.2)

but also, as pointed out in [JK, p. 220], its quartic companion

x4 − T (x)x3 + S(x)x2 −N(x)x = 0,

the latter being implied by the former only in characteristic not 2. In particular, J has degree at
most 3. Conversely, given any Jordan algebra J of degree 3 over k, with generic norm N = NJ and
identity element 1 = 1J , we define the adjoint ] as the numerator of the inversion map to obtain a
cubic norm structure (V,N, ], 1) (V being the vector space underlying J) satisfying J = J(V, N, ], 1).
We then write T = TJ for the associated trace form, which agrees with the generic trace of J , and
call S = SJ the quadratic trace of J . For y ∈ J×, the quadratic trace of J (y) is given by

SJ(y)(x) = TJ(y], x]).(1.4.3)

Denoting by J0 = ker T the space of trace zero elements in J , the relation (cf. [McC, (16)])

S(x, y) = T (x)T (y)− T (x, y) (x, y ∈ J)(1.4.4)

immediately implies the following elementary observation.

1.5 Proposition. Let J be a Jordan algebra of degree 3 over k whose generic trace is nondege-
nerate. Then S∗J , defined to be the quadratic trace of J for char k 6= 2 and its restriction to J0 for
char k = 2, is a nonsingular quadratic form over k. ¤

1.6 Cubic étale algebras. Given a cubic étale k-algebra E, the preceding considerations apply
to its associated Jordan algebra, which has degree 3 and will be identified with E. Also, we write
∆(E) for the discriminant of E, viewed as a quadratic étale k-algebra [KMRT, §18], and δ(E/k)
for the element of H1(k,Z/2Z) determined by ∆(E). The connection between δ(E/k) and dE/k,
the ordinary discriminant, is the same as for quadratic étale algebras, cf. 1.2. Sometimes we will
use the Scharlau transfer (TE)∗ [Scha, Chap. 2] (cf. [PR7, 3.4, 3.5] for a characteristic-free ad-hoc
description) of quadratic (resp. symmetric bilinear) forms over E to quadratic (resp. symmetric
bilinear) forms over k. The key fact is Frobenius reciprocity

(TE)∗
(
β . (q ⊗ E)

) ∼= (TE)∗(β) . q(1.6.1)

for a symmetric bilinear form β over E and a quadratic form q over k. Dito for étale k-algebras of
degree other than 3.
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1.7 Reduced algebras. Let J be a Jordan algebra of degree 3 over k. Then J is either a division
algebra or it is reduced [Ra1, Theorem 1]. In the latter case, J can be co-ordinatized, so there exist a
composition algebra C over k (the possibility of a purely inseparable field extension of characteristic
2 and exponent 1 being included) and a diagonal matrix g = diag(γ1, γ2, γ3) ∈ GL3(k) with the
following property: J is isomorphic to H3(C, g), the Jordan algebra of all 3-by-3 matrices x over
C which have diagonal entries in k and are g-hermitian in the sense that x = g−1tx∗g, ∗ being the
canonical involution of C. We call C, which is unique up to isomorphism, the co-ordinate algebra
of J . Writing NC (resp. TC) for the norm (resp. trace) of C and

u[jl] = γluejl + γju
∗elj (u ∈ C, 1 ≤ j, l ≤ 3, j 6= l)

for the usual hermitian matrix units, the elements of J = H3(C, g) have the form

x =
∑

αiei +
∑

ui[jl], y =
∑

βiei +
∑

vi[jl] (αi, βi ∈ k, ui, vi ∈ C),(1.7.1)

both multiple sums being extended over all cyclic permutations (ijl) of (123). By [McC, p. 502],
norm, adjoint, base point and associated trace form of J are given by the formulae

NJ(x) = α1α2α3 −
∑

γjγlαiNC(ui) + γ1γ2γ3TC(u1u2u3),(1.7.2)

x] =
∑(

αjαl − γjγlNC(ui)
)
ei +

∑(
γi(ujul)∗ − αiui

)
[jl],(1.7.3)

1 =
∑

ei,(1.7.4)

TJ(x, y) =
∑

αiβi +
∑

γjγlNC(ui, vi).(1.7.5)

This implies

SJ(x) =
∑(

αjαl − γjγlNC(ui)
)
.(1.7.6)

Moreover, the diagonal E =
∑

kei ⊂ J is a split cubic étale subalgebra, and, writing E⊥ for its
orthogonal complement relative to the generic trace, we conclude SJ |E⊥ ∼= QJ , where

QJ := 〈−γ2γ3〉. NC ⊥ 〈−γ3γ1〉. NC ⊥ 〈−γ1γ2〉. NC(1.7.7)

is an invariant of J [P3, p. 593]. The following standard fact has been observed in [P3, Proposition
1]. (Recall that an algebra is said to be absolutely simple if it stays simple under all base field
extensions.)

1.8 Proposition. Given a reduced absolutely simple Jordan algebra J of degree 3 over k, the
following statements are equivalent.

(i) J contains nonzero nilpotent elements.

(ii) QJ is isotropic.

(iii) J can be co-ordinatized as in 1.7, with g = diag(1,−1, 1).

¤
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1.9 The Tits process. We now recall from [PR3] the most important technical tool of the paper.
Let K be a quadratic étale k-algebra, B a separable associative algebra of degree 3 over K (with
the obvious meaning if K ∼= k× k is split) and τ a K/k-involution of B. Assume that we are given
invertible elements u ∈ H(B, τ), the Jordan algebra of τ -symmetric elements in B, and b ∈ K
satisfying NB(u) = NK(b). Then we may extend NB, ] (the adjoint of B or B+, cf. 1.4), 1B as
given on B and H(B, τ) to the k-vector space V = H(B, τ)×B according to the rules

N
(
(v0, v1)

)
= NB(v0) + bNB(v) + τ(b)τ

(
NB(v)

)− TB

(
v0, vuτ(v)

)
,(1.9.1)

(v0, v)] =
(
v]
0 − vuτ(v), τ(b)τ(v)]u−1 − v0v

)
,(1.9.2)

1 = (1B, 0)(1.9.3)

for v0 ∈ H(B, τ), v ∈ B to obtain a cubic norm structure whose corresponding Jordan algebra will
be written as J = J(K,B, τ, u, b). The associated trace form is given by

T (x, y) = TB(v0, w0) + TB

(
vu, τ(w)

)
+ TB

(
wu, τ(v)

)
(1.9.4)

for x = (v0, v), y = (w0, w) ∈ J . Furthermore, H(B, τ) identifies as a subalgebra of J through the
first factor. We recall from [PR3, 5.2] that J is a division algebra if and only if b is not a generic
norm of B. The following useful result has been established in [PR3, 3.7].

1.10 Proposition. Notations being as in 1.9, let w ∈ B× and put u′ = wuτ(w), b′ = NB(w)b.
Then the assignment (v0, v) 7−→ (v0, vw) determines an isomorphism from J(K, B, τ, u′, b′) onto
J(K, B, τ, u, b). ¤

1.11 The second Tits construction. If (B, τ) is a central simple associative algebra of degree
3 over k with involution of the second kind (central simplicity being understood in the category of
algebras with involution, cf. [KMRT, pp. 20,21]), the Tits process 1.9 applies to K = Cent(B), the
centre of B, and J(B, τ, u, b) := J(K,B, τ, u, b) is an Albert algebra, i.e., a k-form of H3(Zor(k)) =
H3(Zor(k),13), where Zor(k) is the split octonion algebra of Zorn vector matrices [SV, 1.8] and
13 stands for the 3-by-3 unit matrix. For example, we may choose u = 1, b = 1, forcing the
Albert algebra J(B, τ, 1, 1) to be reduced. Following [PR6, 1.7], we write Oct J for the co-ordinate
algebra of J(B, τ, 1, 1) in the sense of 1.7, which is an octonion algebra called the octonion algebra
of J = H(B, τ). Given any cubic étale subalgebra E ⊂ J , the norm of Oct J can be described by
the following formulae (cf. [PR7, 1.11]):

NOct J
∼= Nk{δ(K/k)+δ(E/k}) ⊥ 〈dK/k〉. SJ |E⊥ ,(1.11.1)

〈dK/k〉. SJ
∼= 〈−1〉 ⊥ NOct J (char k 6= 2),(1.11.2)

S0
J
∼=

(
NOct J

)
δ(K/k)+1

(char k 6= 2).(1.11.3)

1.12 The first Tits construction. Let A be a separable associative algebra of degree 3 over k
and α ∈ k×. Then NA, ], 1A as given on A extend to the vector space A×A×A according to the
rules

N
(
(v0, v1, v2)

)
= NA(v0) + αNA(v1) + α−1NA(v2)− TA(v0v1v2),(1.12.1)

(v0, v1, v2)] =
(
v]
0 − v1v2, α

−1v]
2 − v0v1, αv]

1 − v2v0

)
,(1.12.2)

1 = (1A, 0, 0)(1.12.3)

6



for v0, v1, v2 ∈ A to yield a cubic norm structure over k whose associated Jordan algebra will be
denoted by J = J(A,α); clearly, A+ identifies as a subalgebra of J through the first factor. If
K ∼= k × k as in 1.9 splits, we obtain B ∼= A × Aop for some separable associative k-algebra A of
degree 3 and τ is the exchange involution, allowing us to identify A+ with H(B, τ) via the diagonal
embedding. Also, b = (α1, α2) with α1, α2 ∈ k×, and applying 1.10 twice (cf. [PR3, 3.8]) yields an
explicit isomorphism J(K,B, τ, u, b) ∼= J(A,α1) extending the identity of A+ = H(B, τ).

1.13 The étale Tits process. Let L,E be étale k-algebras of dimension 2, 3, respectively, and
write σ for the nontrivial k-automorphism of L. Following [PT], we apply 1.9 to K = L, B = E⊗L
and τ = σ, acting as 1E ⊗ σ on B. Hence, given u ∈ E = H(E ⊗ L, σ) and b ∈ L having the
same nonzero norms, we may perform the Tits process 1.9 to obtain the algebra J(E, L, u, b) =
J(L,E⊗L, σ, u, b). If L ∼= k×k splits, the étale Tits process becomes the étale first Tits construction
J(E, α) for some α ∈ k× as in 1.12. Combining [PR2, Theorem 1] with [PT, 1.6] and [PR7, (1.10.2)],
we conclude:

1.14 Theorem. Let L, E be étale k-algebras of dimension 2, 3, respectively, and (B, τ) a central
simple associative algebra of degree 3 with involution of the second kind over k. Given an isomorphic
embedding ι from E to J = H(B, τ), the following statements are equivalent.

(i) There exist invertible elements u ∈ E, b ∈ L having the same norms such that ι extends to
an isomorphism from the étale Tits process J(E, L, u, b) onto J .

(ii) Writing K for the centre of B, we have δ(L/k) = δ(K/k) + δ(E/k) in H1(k,Z/2Z).

In this case, dL/k = dK/kdE/k in k×/k×2. ¤

1.15 Springer forms. Let J be a Jordan algebra of degree 3 over k and E ⊂ J a cubic étale
subalgebra. Following [PR1, Proposition 2.1], the assignment (v, x) 7−→ −v×x gives E⊥ the struc-
ture of a left E-module and, for every x ∈ E⊥, we may decompose x] = −qE(x) + rE(x), qE(x) ∈
E, rE(x) ∈ E⊥ to obtain a quadratic form qE : E⊥ −→ E, called the Springer form of E in J . We
are now in a position to recall [PR4, 3.7].

1.16 Lemma. Notations being as in 1.15, suppose y ∈ E⊥ and qE(y) ∈ E are both invertible in
J . Suppose further that the subalgebra J ′ of J generated by E and y has dimension 9. Then

L = k[X]/
(
X2 −X + NJ(y)−2NJ

(
qE(y)

))

is a quadractic étale k-algebra,

u = qE(y) ∈ E×, b = NJ(y)(1−X)mod
(
X2 −X + NJ(y)−2NJ

(
qE(y)

)) ∈ L×

have the same norms and J ′ ∼= J(E,L, u, b). ¤
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1.17 Reduced models. Following [PR7, 2.8], every absolutely simple Jordan algebra J of degree
3 over k has a unique reduced model, denoted by Jred, which is characterized by the following
condition: Jred is a reduced absolutely simple Jordan algebra of degree 3 over k as in 1.7 satisfying
J ⊗ F ∼= Jred ⊗ F for every field extension F/k which reduces J in the sense that the base change
J ⊗ F is reduced over F . We then call the co-ordinate algebra of Jred the coordinate algebra of J .

2. Involutions and Pfister forms

2.0 Our aim in this section is to extend the construction of [HKRT] (see also [KMRT]) attaching
a 3-fold Pfister form to any central simple associative algebra of degree 3 with involution of the
second kind to base fields of arbitrary characteristic. With an eye on applications later on, we
begin the discussion in a slightly more general setting. Concerning Pfister forms, we follow the
notational conventions of [KMRT, p. xxi].

2.1 Jordan algebras of degree 3 and Pfister forms. Let J be an absolutely simple Jordan
algebra of degree 3 over k whose generic trace is nondegenerate. (The latter restriction only excludes
the symmetric 3-by-3 matrices over k and their isotopes for char k = 2.) Writing C for the co-
ordinate algebra of J as in 1.17, the reduced model of J has the form Jred

∼= H3(C, g) for some
diagonal matrix g = diag(−γ1,−γ2, 1) ∈ GL3(k) (1.7, 1.17). If F = k × k × k stands for the split
étale cubic k-algebra, we may combine [PR7, 2.2] with the relations

SE
∼= 〈−dE/k〉 ⊥ h (char k 6= 2),(2.1.1)

S0
E
∼= Nk{δ(E/k)+1} (char k = 2),(2.1.2)

valid for arbitrary cubic étale k-algebras E [PR6, 3.3, 3.2], to conclude that, in the terminology of
1.5,

S∗J ∼= S∗F ⊥ QJ ,(2.1.3)

where

QJ := QJred
∼= 〈γ1, γ2,−γ1γ2〉. NC(2.1.4)

is as in (1.7.7). Hence

NC ⊥ 〈−1〉. QJ
∼= 〈〈γ1, γ2〉〉. NC(2.1.5)

is an (n + 2)-fold Pfister form if C has dimension 2n.

2.2 The Pfister form of an involution. For the rest of this section, we fix a central simple
associative algebra (B, τ) of degree 3 with involution of the second kind over k. We write K =
Cent(B) for the centre of B and J = H(B, τ) for the Jordan algebra over k of τ -symmetric elements
in B. Specializing 2.1 to J , we obtain C ∼= K, and

β = 〈−γ1,−γ2, γ1γ2〉(2.2.1)
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is a nondegenerate symmetric bilinear form of dimension 3 and determinant 1 satisfying

S∗J ∼= S∗F ⊥ (〈−1〉β) . NK ,(2.2.2)

in accordance with [KMRT, (11.22)]. Hence, as in [KMRT, (19.4)],

π(J) := π(τ) := NK ⊥ β .NK(2.2.3)

is a 3-fold Pfister form, called the Pfister form of J (or of τ). It is clear from the construction
that J and Jred have isometric Pfister forms. The connection with the octonion algebra of J is the
obvious one.

2.3 Proposition. Notations being as in 2.2, the Pfister form and the octonion norm of J are
isometric.

Proof. Writing Jred = H3(K, g) for some g = diag(−γ1,−γ2, 1) ∈ Gl3(k), we apply (2.2.1), (2.2.3)
and obtain π(J) ∼= 〈〈γ1, γ2〉〉. NK . On the other hand, by [PR7, 2.7], Oct J ∼= Cay(K; γ1, γ2) as
an iterated Cayley-Dickson doubling process, and the assertion follows. ¤

Our next aim will be to show that the involution τ up to isomorphism is uniquely determined by its
Pfister form, thus extending [HKRT, Theorem 15] (or [KMRT, (19.6)]) to base fields of arbitrary
characteristic.

2.4 Theorem. Notations being as in 2.2, let τ ′ be another involution of the second kind on B and
put J ′ = H(B, τ ′). Then the following statements are equivalent.

(i) τ ′ and τ are conjugate, i.e., τ = Int(u) ◦ τ ′ ◦ Int(u)−1 for some u ∈ B×, where Int(u) stands
for the inner automorphism of B determined by u.

(ii) (B, τ ′) and (B, τ) are isomorphic, i.e., there exists a k-automorphism ϕ of B satisfying

ϕ ◦ τ ′ = τ ◦ ϕ.

(iii) J ′ and J are isomorphic.

(iv) S∗J ′ and S∗J are isometric.

(v) π(J ′) and π(J) are isometric.

(vi) Oct J ′ and Oct J are isomorphic.

Proof. The implications (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) are obvious, whereas (iv) ⇔ (v) ⇔ (vi) follow
from Witt cancellation in (2.2.2), (2.2.3) and from 2.3, respectively. We also have (iii) ⇒ (ii) by
[J2, Theorem 5 and p. 118]. It therefore suffices to establish the implications (v) ⇒ (i) or (iv) ⇒
(i). For char k 6= 2, this is just part of [KMRT, (19.6)], so we may assume char k = 2. Moreover,
the argument given in [KMRT, p. 305] works in this special case as well providing K or B is split.
We are thus allowed to assume that K is a field and B is a division algebra. Then, however, the
argument of loc. cit. breaks down, relying as it does on a theorem of Bayer-Fluckiger and Lenstra
[BFL, Corollary 1.4] (see also [KMRT, (6.17)]), which has been proved in characteristic not 2 only.
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Therefore we are forced to proceed in a different way, and we do so by reducing the case char k
= 2 to the case char k 6= 2 as follows. First we note that (ii) implies (i) since B, being a division
algebra of degree 3 over K, does not allow any K-linear anti-automorphisms. Hence it suffices to
establish the implication (vi) ⇒ (iii). We do so by following Teichmüller [T] to find a local field k0

of characteristic 0 whose residue class field is our given field k of characteristic 2. In what follows,
free use will be made of the noncommutative and nonassociative valuation theory developed in
[Schi],[P1],[P2], [P4]. First of all, (B, τ), (B, τ ′) have a unique lift to unramified central associative
division algebras (B0, τ0), (B0, τ

′
0), respectively, of degree 3 with involution of the second kind over

k0 [P4, Theorem 1]. Clearly, K0 = Cent(B0) is an unramified quadratic field extension of k0, with
residue class field K, and J0 = H(B0, τ0), J ′0 = H(B0, τ

′
0) are unramified Jordan division algebras

of degree 3 and dimension 9 over k0, with residue class algebras J, J ′, respectively [P4, Proposition
2]. Setting C = Oct J, C ′ = Oct J ′, C0 = Oct J0, C ′

0 = Oct J ′0, we conclude C ′ ∼= C from (vi)
and claim that it suffices to show C ′

0
∼= C0. Indeed, this implies J ′0 ∼= J0 since 2.4 is known to hold

for k0, and passing to the residue class algebras gives (iii). In order to prove C ′
0
∼= C0, we first

establish the following intermediate result:

If C0 is split, so is C. If C0 is a division algebra, then C is the(2.4.1)
residue class algebra of C0, hence a division algebra as well.

To do so, we begin by recalling that C0 is the co-ordinate algebra of the reduced Albert algebra
J0 = J(B0, τ0, 1, 1) (1.11). Furthermore, we write o0 for the valuation ring of k0, p0 for the valuation
ideal of o0, O0 for the valuation ring of K0 and M0 for the valuation ring of B0. Then τ0 restricts
to an O0/o0-involution of M0, also written as τ0, such that H(M0, τ0) is the valuation ring of J0.
Furthermore, extending the terminology of the Tits process (1.9) to the arithmetic setting in the
obvious way,

M0 := J(M0, τ0, 1, 1) = H(M0, τ0)×M0 ⊂ J0

turns out to be an o0-order of J0 which, thanks to a theorem of Brühne [Br, 3.9.10], is selfdual in
the sense that it agrees with its dual lattice relative to the trace form. Reduction mod p0 gives
M0 ⊗ k ∼= J(B, τ, 1, 1), so

C is the co-ordinate algebra of M0 ⊗ k.(2.4.2)

We now distinguish the following cases.

Case 1. C0 is split.
Then C0

∼= Zor(k0) is the algebra of Zorn vector matrices over k0, and since M0, being selfdual,
is distinguished as an order in J0 (cf. Knebusch [Kn, §8], Racine [Ra1, IV §4 and Lemma 2]), we
conclude M0

∼= H3(Zor(o0)) [Ra2, IV Proposition 5]. Reducing mod p0 and comparing with (2.4.2)
implies C ∼= Zor(k), hence the first part of (2.4.1).

Case 2. C0 is a division algebra.
Writing R0 for the valuation ring of C0, it follows from [Br, 3.4.7] that M0 is isomorphic to
H3(R0, g0) for some diagonal matrix g0 ∈ GL3(o0). Again reducing mod p0 and observing (2.4.2),
we obtain the second part of (2.4.1).

Noting that, by symmetry, (2.4.1) holds für C ′, C ′
0 as well, we are now ready to prove that C ′

0 and
C0 are isomorphic. Indeed, if C ′ ∼= C are both split, so are C ′

0, C0 by (2.4.1), and hence they are
isomorphic. On the other hand, if C ′ ∼= C are both division algebras, (2.4.1) implies that C ′

0, C0

are unramified octonion division algebras over k0 whose residue class algebras are isomorphic. But
this implies C ′

0
∼= C0 by [P2, Theorem 1], as desired. ¤
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2.5 Remark. a) R.S. Garibaldi has proposed an approach to the implication (v) ⇒ (i) of 2.4
that is different from the one adopted here and relies on the Rost invariant of algebraic groups (cf.
Garibaldi-Merkurjev-Serre [GaMS] or Gille [Gi] for details). We merely sketch the main ingredients
of his approach. Following [Ga], the desired implication is equivalent to the Rost invariant having
trivial kernel for groups of typ A2. To prove the latter, [KMRT, (19.6)] does the job for char k 6= 2.
Otherwise we choose k0 as above and use Bruhat-Tits theory to lift a group of type A2 over k to
a group of type A2 over k0. Since char k0 = 0, the Rost invariant of the latter has trivial kernel.
This property being preserved under passage from k0 to k [Gi, Théorème 2], the assertion follows.
b) A substantial part of the preceding result may be phrased in purely Jordan-theoretical terms
as follows. Let J, J ′ be absolutely simple Jordan algebras of degree 3 and dimension 9 over k and
suppose they are isotopic. Then statements (iii) - (vi) of 2.4 are equivalent.

¤

2.6 Distinguished involutions. The involution τ of B is said to be distinguished if π(τ) is
hyperbolic or, what amounts to the same, the octonion algebra of J = H(B, τ) is split (2.3). By
2.4, distinguished involutions are unique up to conjugation, and over a finite field every involution
of the second kind on an algebra of degree 3 is distinguished. Before we can establish the existence
of distinguished involutions in general, we require a preparation and define the index of a (possibly
singular) quadratic form q over k, denoted by ind(q), as the maximal dimension of totally isotropic
subspaces of q. This is clearly the ordinary Witt index if q is nonsingular or k has characteristic
not 2.

2.7 Theorem. Notations being as in 2.2, let E ⊂ J be a cubic étale subalgebra. Then the following
statements are equivalent.

(i) τ is distinguished.

(ii) Jred contains nonzero nilpotent elements.

(iii) SJ
∼= [−dK/k] ⊥ 4h.

(iv) ind(SJ) ≥ 4.

(v) SJ |E⊥ is isotropic.

(vi) ind(S0
J) ≥ 3.

(vii) ind(S0
J) ≥ 2.

Proof. The equivalence of (i) - (iv) has been established in [PR7, 2.11]. Furthermore, counting
dimensions of totally isotropic subspaces we see that (iv) implies (v) and (vi). Since the implication
(vi) ⇒ (vii) is obvious, it therefore remains to prove that both (v) and (vii) imply (i).
(v) =⇒ (i). The property of SJ to be isotropic on E⊥ by (1.11.1) carries over to N = NOct J .
(vii) =⇒ (i). We first assume char k 6= 2. Then (vii) combines with (1.11.1) to show that 〈−1〉 ⊥ N
has index ≥ 2, forcing N to be isotropic. On the other hand, assuming char k = 2 and setting
δ = δ(K/k) + 1 in H1(k,Z/2Z), (vii) combines with (1.11.3) to show that the δ-associate of N has
index at least 2. But since N and Nδ agree on a linear hyperplane (1.3), N itself must be isotropic,
and we are done again. ¤
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2.8 Remark. For char k 6= 2, 3, the equivalence of (i), (vi), (vii) may be found in [KMRT,
(19.10)]; the characterization of distinguished involutions by means of (v) seems to be new. ¤

2.9 Lemma. Let E be a cubic étale k-algebra and u ∈ E×. Then the quadratic form

qu : E −→ k, x 7−→ qu(x) := TE(u, x])

is isometric to 〈NE(u)〉. SE. In particular, E contains an invertible element v satisfying qu(v) = 0
unless k = F2 and E ∼= k × k × k splits.

Proof. The assignment x 7−→ xu gives an isometry of the desired kind. Therefore, since the
quadratic trace of E satisfies the remaining assertion of the lemma [PR2, Lemma 3], so does qu. ¤

2.10 Theorem. Notations being as in 2.2, let E ⊂ J be a cubic étale subalgebra. Then there exists
an invertible element v ∈ E such that Int(v) ◦ τ is a distinguished involution of B. In particular,
B admits distinguished involutions fixing E.

Proof. By 1.14 there exist a quadratic étale k-algebra L as well as invertible elements u ∈ E, b ∈ L
satisfying NE(u) = NL(b) such that J ∼= J(E, L, u, b). The case of a finite field being obvious (put
v = 1), we may assume that k is infinite, whence 2.9 yields an invertible element v ∈ E satisfying
TE(uv]) = 0. Since H(B, Int(v) ◦ τ) is isomorphic to J (v), the v-isotope of J , and E⊥ agrees with
the orthogonal complement of E(v) in J (v), it suffices to show that SJ(v) is isotropic on E⊥ (2.7).
Setting y = (0, 1) ∈ E⊥, this follows from

SJ(v)(y) = TJ

(
(v], 0), (0, 1)]

)
(by (1.4.3))

= TJ

(
(v], 0), (−u, τ(b)u−1)

)
(by (1.9.2))

= −TE(uv]) (by (1.9.4))
= 0. ¤

2.11 Corollary. (cf. [HKRT, Proposition 17] or [KMRT, (19:30)]) Let τ be a distinguished invo-
lution of B and E ⊂ B a cubic étale k-subalgebra. Then H(B, τ) contains a subalgebra isomorphic
to E.

Proof. By 2.4, it suffices to establish the existence of a distinguished involution τ1 of B such that
H(B, τ1) contains E. In order to do so, we note that either k = F2 and E ∼= k × k × k splits or
E = k[x] for some x ∈ E. While in the former case the assertion is obvious, we may invoke [KMRT,
(4.18)] in the latter to find a K/k-involution τ ′ of B satisfying E ⊂ H(B, τ ′). Now 2.10 applies
and proves what we want. ¤

3. Distinguished Involutions and étale first Tits constructions

3.0 As in the preceding section, we let (B, τ) be a central simple associative algebra of degree
3 with involution of the second kind over k and put K = Cent(B), J = H(B, τ). We will be
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concerned with the interplay between distinguished involutions and étale first Tits constructions.
More specifically, we wish to extend the description of this interplay given in [HKRT, Theorem 16]
and [KMRT, (19.14), (19.15), Ex. 19.9] to base fields of arbitrary characteristic as follows.

3.1 Theorem. Notations being as in 3.0, the following statements are equivalent.

(i) τ is distinguished.

(ii) There exists a cubic étale subalgebra E ⊂ J satisfying δ(E/k) = δ(K/k).

(iii) There exist a cubic étale subalgebra E ⊂ J and α ∈ k× such that J ∼= J(E, α) is an étale first
Tits construction.

This theorem answers a question raised by Petersson-Racine [PR7, 2.12] in all characteristics. While
the implication (iii) ⇒ (i) has already been derived in [PR7, 2.11], (ii) ⇒ (iii) follows immediately
from 1.14 and 1.12. It therefore remains to establish the implication (i) ⇒ (ii), which is a difficult
result originally due to Albert [A] for char k 6= 2, 3. Another approach working in characteristic 2
as well (but still excluding characteristic 3) more recently has been devised by Haile-Knus [HK];
combined with [KMRT, Ex. 19.9] it yields 3.1 in all characteristics. On the other hand, the
approach adopted here yields a few additional results of independent interest.

3.2 Lemma. Assume that τ is distinguished and J is reduced. Then, given δ ∈ H1(k,Z/2Z),
there exists a cubic étale subalgebra E ⊂ J satisfying δ(E/k) = δ.

Proof. By 2.11, it suffices to find g = diag(γ1, γ2, γ3) ∈ GL3(k) such that J ′ = H3(K, g) contains a
cubic étale subalgebra of the desired kind. We may clearly assume δ 6= 0. Given any g as above,
Faulkner’s Lemma [F, Lemma 1.5] immediately adapts to the present set-up and shows that the
Peirce-0-component of J ′ relative to the diagonal idempotent e1 is given by

J ′0(e1) = J(S′0, e2 + e3),

where S′0 is the quadratic trace of J ′ restricted to J ′0(e1) and the right-hand side refers to the
Jordan algebra of a quadratic form with base point. Using (1.7.6), it now follows easily that the
minimum polynomial of

x = e2 + 1[23] ∈ J ′0(e1)

in J ′0(e1) is X2−X−γ2γ3. Writing M for the subalgebra of J ′0(e1) generated by x, E := ke1⊕M ⊂ J ′

is a 3-dimensional subalgebra satisfying δ(E/k) = 1+4γ2γ3 modulo invertible squares for char k 6= 2
and δ(E/k) = γ2γ3 modulo Artin-Schreier elements for char k = 2. In any event, choosing γ2, γ3

appropriately, we obtain δ(E/k) = δ, and the proof is complete. ¤

3.3 Proposition. Notations being as in 3.0, we realize J ∼= J(E, L, u, b) as an étale Tits process,
where L,E are étale k-algebras of dimension 2, 3, respectively, and u ∈ E, b ∈ L are invertible
elements satisfying NE(u) = NL(b). Then the Pfister form of J satisfies

π(J) ∼= NL ⊥ 〈dE/k〉(TE)∗(〈u〉) . NL

∼= NL ⊥ 〈dE/k〉 . (TE)∗
(〈u〉 . (NL ⊗ E)

)
.
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Proof. This follows at once from Frobenius reciprocity (1.6.1) combined with [PR7, 3.8, 3.9] and
(1.3.4). ¤

3.4 Lemma. Hypotheses being as in 3.3, let us assume that J is a division algebra. Given a
nonzero element x ∈ E ⊗ L, the minimum polynomial of y := (0, x) ∈ J is µy = X3 + pX + q,
where

p = −TE

(
uNL(x)

)
, q = −TL

(
bNE(x)

)
.

Furthermore, F = k[y] ⊂ J is a cubic subfield satisfying

dF/k = 4TE

(
uNL(x)

)3 − 27TL

(
bNE(x)

)2

modulo nonzero squares and, if char k = 2,

δ(F/k) =
TE

(
uNL(x)

)3 + TL

(
bNE(x)

)2

TL

(
bNE(x)

)2

modulo Artin-Schreier elements.

Proof. That µy has the form as indicated follows immediately from (1.4.2) combined with 1.9. The
formula for the discriminant being standard, we are left with the final formula in characteristic 2,
which follows from [KMRT, p. 301] or [PR6, 3.6]. ¤

Dealing with distinguished involutions has the technical advantage of allowing some control over
the discriminant of cubic étale subalgebras. This is mainly due to 3.4 and the following fact.

3.5 Lemma. Hypotheses being as in 3.3, let us assume that τ is distinguished. Then

(TE)∗
(〈u〉 . (NL ⊗ E)

) ∼= (TE)∗(〈u〉) . NL
∼= 〈dK/k〉 . NL + 2h.

Furthermore, if E and L are fields, every d ∈ K yields invertible elements u1 ∈ E, b1 ∈ L satisfying
NE(u1) = NL(b1), J ∼= J(E,L, u1, b1) and TE(u1) = d.

Proof. Since

π(J) ∼= NL ⊥ 〈dE/k〉(TE)∗(〈u〉) . NL (by 3.3)

is hyperbolic, we obtain
〈dE/k〉(TE)∗(〈u〉) . NL = 〈−1〉 . NL

in the Witt group of k, hence

(TE)∗(〈u〉) . NL = 〈−dE/k〉 . NL

= 〈dK/k〉 〈−dL/k〉 . NL (by 1.14)

= 〈dK/k〉 . NL (by (1.3.4)).

Comparing dimensions, yields the desired formula. In particular, the quadratic form

(TE)∗
(〈u〉 . (NL ⊗E)

)

being isotropic, must be universal, so some w ∈ (E ⊗ L)× satisfies TE

(
uNL(w)

)
= d. Setting

u1 := uNL(w), b1 := bNE(w) and invoking 1.10 completes the proof. ¤
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3.6 Proposition. Notations being as in 3.0, assume that τ is distinguished and k has charac-
teristic not 3. Then there exists a cubic étale subalgebra F ⊂ J satisfying δ(F/k) = δ(K0/k)
where

K0 = k[X]/(X2 −X + 1).

Proof. By 3.2 and 1.14, we may assume that J ∼= J(E, L, u, b) is a division algebra arising from the
étale Tits process as in 3.3. Then 3.5 yields a nonzero element x ∈ E⊗L satisfying TE

(
uNL(x)

)
= 0.

Putting y = (0, x) ∈ J and F = k[y] ⊂ J , 3.4 implies dF/k = −3 = dK0/k in k×/k×2 and
δ(F/k) = 1 = δ(K0/k) in k/℘(k) for char k = 2. ¤

3.7 Proof of 3.1, (i) =⇒ (ii) for char k 6= 3. By 3.2 we may assume that J is a division
algebra. By 3.6 combined with 1.14, we may further assume that J ∼= J(E, L, u, b) arises from the
étale Tits process as in 3.3 where E satisfies δ(E/k) = δ(K0/k). After these reductions, we apply
[PR7, 4.1] to conclude that some isotope of J is a unital Tits process. More precisely, there exists
a K/k-involution τ ′ of B satisfying J ′ := H(B, τ ′) ∼= J(E, L, 1, b′) for some b′ ∈ L having norm 1,
but not belonging to k1 since, otherwise, J ′ would be reduced. Applying 3.4 to x = 1 ∈ E ⊗L, we
now obtain a separable cubic subfield F ⊂ J ′ which satisfies

dF/k = −3
(
TL(b′)2 − 4NL(b′)

)
= dK0/kdL/k

in k×/k×2. Furthermore, for char k = 2, we obtain

δ(F/k) = 1 +
NL(b′)
TL(b′)2

= δ(K0/k) + δ(L/k)

in k/℘(k). Hence in all characteristics 6= 3 we have δ(F/k) = δ(E/k)+ δ(L/k) = δ(K/k) (by 1.14),
so J ′ is an étale first Tits construction arising from F . But this implies that τ ′ is distinguished
((iii) ⇒ (i) of 3.1), forcing J and J ′ to be isomorphic. Hence, as J ′ satisfies 3.1 (ii), so does J . ¤

It remains to prove the implication (i) ⇒ (ii) of 3.1 for char k = 3. Actually, the following
generalization can be established in this special case.

3.8 Theorem. Notations being as in 3.0, let us assume that τ is distinguished and k has charac-
teristic 3. Then one of the following holds.

a) K ∼= k × k splits, and every separable cubic subfield of J is cyclic.

b) Every d ∈ k allows a cubic subalgebra of J having discriminant dmod k×2.

Proof. If J is reduced, it contains nilpotent elements other than zero (2.7), hence b) holds (3.2).
We may therefore assume that J is a division algebra. Since J contains cyclic cubic subfields [P6,
Theorem 3], it suffices to establish the following claim.
Either b) holds or every cubic subfield of J has discriminant dK/k mod k×2.
To prove this, suppose E ⊂ J is a separable cubic subfield satisfying dE/k 6= dK/k in k×/k×2. Then
J ∼= J(E, L, u, b) arises from the étale Tits process as in 3.3, and L is a field (1.14). Moreover,
given d ∈ k, we may assume TE(u) = −ddL/k (3.5). Choosing θ ∈ L satisfying L = k[θ], θ2 = dL/k,
we may apply 3.4 to x = 1 ⊗ θ ∈ E ⊗ L to obtain a cubic subfield F ⊂ J such that dF/k =
TE

(
uNL(x)

)
= d in k×/k×2. Hence b) holds, and the proof is complete. ¤
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3.9 Remark. a) If J as in 3.8 is a division algebra, conditions a) and b) hold simultaneously if
and only if k is quadratically closed.
b) As observed in [HK], Wedderburn’s theorem on the cyclicity of central associative division
algebras D of degree 3 is a special case of 3.1: Put B = D × Dop and let τ be the exchange
involution. ¤

4. Albert Algebras and Pfister forms.

4.0 In this section, we will be concerned with the invariants mod 2 of Albert algebras in arbitrary
characteristic. The cohomological interpretation of these invariants (cf. Serre [Se] and [KMRT]),
which has to be modified in characteristic 2 along the general lines indicated in [GaMS], will not
be discussed here any further. Instead, we rely exclusively on their description by means of Pfister
forms. Throughout this section, J will be an arbitrary Albert algebra over k.

4.1 The invariants mod 2 as Pfister forms. Specializing 2.1 to J as in 4.0, the co-ordinate
algebra C of J is an octonion algebra over k, and the norm of C, i.e.,

π3(J) = NC ,(4.1.1)

is a 3-fold Pfister form, called the 3-invariant mod 2 of J . If J ∼= J(B, τ, u, b) arises from a central
simple associative algebra (B, τ) of degree 3 with involution of the second kind by means of the
Tits process as in 1.9, where u ∈ H(B, τ), b ∈ Cent(B) are invertible elements having the same
norms, π3(J) becomes isometric to the Pfister form of τ (u) = Int(u) ◦ τ ([PR6, 1.8] combined with
2.3, or [KMRT, (40.2)]). On the other hand, returning to 2.1, in particular (2.1.5),

π5(J) = 〈〈γ1, γ2〉〉 . NC
∼= NC ⊥ 〈−1〉 . QJ(4.1.2)

is a 5-fold Pfister form, called the 5-invariant mod 2 of J . Clearly, the invariants mod 2 of J and Jred

are the same. Also, by Racine’s characteristic-free version [Ra1, Theorem 3] of Springer’s criterion
[Sp], combined with the connection between SJ and QJ (1.7), two reduced Albert algebras are
isomorphic if and only if they have the same invariants mod 2. For char k 6= 2, the Arason invariants
fi(J) of πi(J) (i = 3, 5) yield the cohomological invariants mod 2 of J : fi(J) ∈ H i(k,Z/2Z).

Our principal aim in this section is to give various characterizations of those Albert algebras (some
of) whose invariants mod 2 are hyperbolic. Since the 5-invariant is a multiple of the 3-invariant, by
(4.1.1), (4.1.2), its hyperbolicity is the weaker condition of the two and will therefore be discussed
first. We begin with two simple technicalities.

4.2 Lemma. Let J ′ be an absolutely simple Jordan algebra of degree 3 over k whose generic trace
is nondegenerate and E ⊂ J ′ a cubic étale subalgebra. Then

h ⊥ QJ ′ ∼= N∆(E) ⊥ (SJ ′ |E⊥).

Proof. Since both sides have the same dimension, it suffices to carry out the following computations
in the Witt group of k. We first assume char k 6= 2. Then (2.1.1), (2.1.3) imply

〈−1〉+ QJ ′ = SJ ′ = SE + (SJ ′ |E⊥)
= 〈−dE/k〉+ (SJ ′ |E⊥),
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and, adding 〈1〉 to both sides, the assertion follows. We are left with the case char k = 2. Then
(2.1.2), (2.1.3) yield

Nk{1} + QJ ′ = S0
J ′ = S0

E + (SJ ′ |E⊥)

= Nk{δ(E/k)+1} ⊥ (SJ ′ |E⊥),

and, passing to the 1-associates of both sides, (1.3.1), (1.3.2) lead to the desired conclusion. ¤

The second technicality is an exercise in characteristic 2.

4.3 Lemma. Let R be a commutative associative k-algebra of degree 2 whose generic trace is
identically zero, g ∈ GL3(k) a diagonal matrix and E ⊂ J ′ = H3(R, g) a cubic étale subalgebra.
For an element y ∈ J ′, orthogonal to E relative to the generic trace, to be nilpotent it is necessary
and sufficient that SJ ′(y) = 0.

Proof. The condition is clearly necessary. Conversely, suppose SJ ′(y) = 0. After a suitable base
field extension we may assume that E ∼= k×k×k is split. The relations NK(u, v) = TK(u, v) = 0 for
all u, v ∈ R imply that R is a local k-algebra, its residue field being purely inseparable of exponent
1 over k. Hence J ′ is simple modulo its radical, and every complete orthogonal system of absolutely
primitive idempotents in J ′ is connected. Since R, thanks to the Isotopy Theorem of [P5], is an
invariant of J ′, reco-ordinatizing if necessary allows us to assume that E sits diagonally in J ′.
Extending the notational conventions of 1.7 to the present more general set-up, and representing
y as in (1.7.1), we conclude βi = 0 for all i, TJ ′(y) = 0 (since y ∈ E⊥), SJ ′(y) = 0 (by hypothesis)
and NJ ′(y) = γ1γ2γ3TK(v1v2v3) (by (1.7.2)) = 0. Hence (1.4.2) shows that y is nilpotent. ¤

4.4 Theorem. Notations being as in 4.0, let E ⊂ J be a cubic étale subalgebra. Then the following
statements are equivalent.

(i) π5(J) is hyperbolic.

(ii) ind(QJ) ≥ 8.

(iii) QJ is isotropic.

(iv) ind(SJ) ≥ 9 for char k 6= 2, ind(S0
J) ≥ 8 for char k = 2.

(v) ind(S∗J) ≥ 3.

(vi) Jred contains nonzero nilpotent elements.

(vii) ind(SJ |E⊥) ≥ 7.

(viii) SJ |E⊥ is isotropic.

(ix) There exist a central simple associative algebra (B, τ) of degree 3 with distinguished involution
of the second kind and invertible elements u ∈ B, b ∈ Cent(B) having the same norms such
that J ∼= J(B, τ, u, b).
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Proof. (i) =⇒ (ii). Since 〈−1〉 . QJ is a subform of π5(J) ((4.1.2)), this follows by counting dimen-
sions of totally isotropic subspaces.
The implications (ii) ⇒ (iii), (iv) ⇒ (v), (vii) ⇒ (viii) are clear.
(iii) =⇒ (i). (4.1.2) shows that the Pfister form π5(J) is isotropic, hence hyperbolic.
(ii) =⇒ (iv). This follows immediately from (2.1.3), (2.1.1).
(v) =⇒ (iii). For char k = 2, we conclude from (2.1.3) that QJ is isotropic. For char k 6= 2, (2.1.1),
(2.1.3) give 〈1〉 ⊥ SJ

∼= 2h ⊥ QJ , and we arrive at the same conclusion.
(iii) ⇐⇒ (vi). Since QJ

∼= QJred
, this is simply a restatement of 1.8.

(ii) =⇒ (vii). Assuming (ii) and combining 4.2 with a dimension count of totally isotropic subspaces
yields (vii).
(viii) =⇒ (ix). This requires a bit more effort. It obviously suffices to show the existence of some
(B, τ) as in (ix) such that H(B, τ) is isomorphic to a subalgebra of J . We begin by choosing a
nonzero element y ∈ E⊥ satisfying SJ(y) = 0 and denote by J ′ the unital subalgebra of J generated
by E and y. Then dimk J ′ ≤ 9. We now consider the following cases.

Case 1. J ′ is a division algebra.
Then J ′ is absolutely simple of degree 3 and dimension 9. Since SJ becomes isotropic on E⊥ ∩ J ′,
we conclude from 2.7 that J ′ has the form H(B, τ) for some central simple associative algebra
(B, τ) of degree 3 with distinguished involution of the second kind.

Case 2. J ′ is not a division algebra.
Then J is reduced, and our first aim will be to show that it contains nonzero nilpotent elements.
Assume the contrary. Then the base field is infinite and J ′ is semisimple of degree 3. If J ′ were not
simple, it would have the form J ′ = kc⊕ J ′′ as a direct sum of ideals for some nonzero idempotent
c ∈ J ′ and some Jordan algebra J ′′ corresponding to a nondegenerate quadratic form with base
point [Ra1, Theorem 1]. But since k is infinite and hence J ′ is generated by two elements, so is J ′′.
This implies dimk J ′′ ≤ 3, and we conclude J ′ = E ⊕ ky. Passing now to the separable closure ks

of k, we may co-ordinatize J ⊗ ks
∼= H3(Cs), Cs being the split octonions over ks, in such a way

that E ⊗ ks corresponds to the diagonal matrices. Then y = y ⊗ 1 ∈ J ′ ⊗ ks belongs to the sum
of off-diagonal Peirce spaces relative to the complete orthogonal system of diagonal idempotents.
All Peirce components of y belonging to J ′⊗ ks as well, we may in fact assume y = v1[23] for some
v1 ∈ Cs since dimJ ′ = 4. Writing Ns for the norm of Cs, we now conclude Ns(v1) = −SJ(y) = 0
from (1.7.6), and (1.7.3) implies y] = 0, hence y2 = y] + TJ(y)y − SJ(y)1 (by (1.4.1)) = 0, con-
tradicting the absence of nilpotent elements in J . This contradiction shows that J ′ is simple of
dimension at most 9. Hence there exists a two-dimensional composition algebra K over k and a
diagonal matrix g ∈ GL3(k) satisfying J ′ ⊂ J1 := H3(K, g) ⊂ J . By construction, SJ becomes
isotropic on E⊥∩J1. Hence it follows from 2.7 if K is étale, and from 4.3 otherwise, that J1

∼= J1red

contains nonzero nilpotent elements, again a contradiction. We have thus shown that J itself con-
tains nonzero nilpotent elements, allowing us to co-ordinatize it as J ∼= H3(C, g), C being the
coordinate algebra of J and g = diag(1,−1, 1) (1.8). Let K be any quadratic étale subalgebra of
C. Then J1

∼= H3(K, g) contains nonzero nilpotent elements and hence corresponds to a central
simple associative algebra of degree 3 over k with distinguished involution of the second kind.
(ix) =⇒ (vi). We put J ′ := H(B, τ). Since τ is distinguished, J ′red contains nonzero nilpotent
elements (2.7) and hence may be co-ordinatized as J ′red ∼= H3(K, g) for some quadratic étale k-
algebra K and g = diag(1,−1, 1). Writing C for the co-ordinate algebra of J , we conclude that
Jred

∼= H3(C, g) [PR7, 2.5] contains nonzero nilpotent elements as well. ¤
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4.5 Remark. Assume char k 6= 2. Then the equivalence of (i), (ix) and

(x) ind(TJ) ≥ 8

is due to [KMRT, (40.7)]. Here condition (x) fits into 4.4 as follows. Since SJ and TJ up to a
sign agree on linear hyperplane of J (by (1.4.4)), their Witt indices differ by at most 1. Hence (iv)
implies (x) and (x) implies (v), showing without recourse to loc. cit. that (i) - (x) are equivalent.

¤

4.6 Isotopy versus isomorphism of Albert division algebras. While it is easy to construct
reduced Albert algebras which are isotopic but not isomorphic, the case of Albert division algebras
is more difficult. A unified solution to this problem, for whose geometric significance we refer to
Tits-Weiss [TW, §38], will be given in the following application of 4.4.

4.7 Theorem. (cf. [TW, (38.9)]) Notations being as in 4.0, let E ⊂ J be a cubic étale subalgebra.
Then there exists a v ∈ E× such that π5(J (v)) is hyperbolic. In particular, if π5(J) is anisotropic,
J (v) cannot be isomorphic to J .

Proof. We may assume that k is infinite. Then Zariski density produces an element y ∈ E⊥

satisfying the hypotheses of 1.16. Hence the subalgebra of J generated by E and y, as it arises
from the étale Tits process (1.16), has the form H(B, τ) for some central simple associative k-algebra
(B, τ) of degree 3 with involution of the second kind. By 2.10, some v ∈ E× makes Int(v) ◦ τ a
distinguished involution, and 4.4 implies that π5(J (v)) is hyperbolic. ¤

4.8 Example: Generic matrices. Let J be the Albert algebra of generic matrices of k [P7].
Thus J is an Albert division algebra over some extension field of k [P7, Theorem 1] and, given any
separable cubic subfield E ⊂ J, SJ is anisotropic on E⊥ [P7, Theorem 2]. Hence π5(J) is anisotropic
as well (4.4), so E contains an invertible element v such that J and J (v) are not isomorphic (4.7).

¤

We now pass to the 3-invariant mod 2 of J . The following technical result generalizes [PR8, 4.12].
For simplicity, we confine ourselves to division algebras.

4.9 Lemma. Let (B, τ) be a central simple associative k-algebra of degree 3 with involution of
the second kind and b ∈ K = Cent(B) satisfy NK(b) = 1. Assume that J = J(B, τ, 1, b) is a
division algebra and let E ⊂ H(B, τ) be a separable cubic subfield. Writing J ′ for the subalgebra
of J generated by E and y = (0, 1) ∈ J , there exists an element b′ ∈ K satisfying NK(b′) = 1 and
J ′ ∼= J(E, K, 1, b′).

Proof. J being a division algebra, we obtain K = k[b] since, otherwise, b = ±1 would be a generic
norm of B. Also, by (1.9.1), (1.9.2), TK(b) = NJ(y) 6= 0 and y] = (−1, τ(b)). Thus, since J ′ is a
division algebra of degree 3 and dimension 9, we may apply 1.16 to conclude J ′ ∼= J(E,L, 1, b′),
where L = k[c] is the quadratic étale k-algebra generated by an element c with minimum polynomial
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X2 − X + TK(b)−2 over k and b′ ∈ L has norm 1. Hence b and TK(b)c have the same minimum
polynomial, and the proof is complete. ¤

4.10 Theorem. Notation being as in 4.0, let E ⊂ J be a cubic étale subalgebra. Then the following
statements are equivalent.

(i) π3(J) is hyperbolic.

(ii) QJ is hyperbolic.

(iii) ind(QJ) ≥ 9.

(iv) SJ has maximal Witt index for char k 6= 2, and ind(S0
J) ≥ 12 for char k = 2.

(v) ind(S∗J) ≥ 11.

(vi) ind(SJ |E⊥) ≥ 11.

(vii) ind(SJ |E⊥) ≥ 10.

(viii) Jred is split.

(ix) Every reducing field of J splits J .

(x) J is a first Tits construction.

Proof. (i) =⇒ (ii). π5(J) ∼= π3(J) ⊥ 〈−1〉 . QJ (by (4.1.1), (4.1.2)), being a multiple of π3(J), must
be hyperbolic as well, giving (ii).
the implications (ii) ⇒ (iii), (iv) ⇒ (v), (vi) ⇒ (vii) are clear.
(iii) =⇒ (i). Combining (iii) with 4.4 we conclude that Jred contains nonzero nilpotent elements and
hence has the form Jred

∼= H3(C, g), where C is the co-ordinate algebra of J and g = diag(1,−1, 1)
(1.8). This implies QJ = QJred

= 〈1,−1, 1〉 . π3(J) (by (1.7.7)) = π3(J) in the Witt group of k, and
(i) follows.
(ii) =⇒ (iv). This follows from (2.1.3), (2.1.1).
(v) =⇒ (iii). This follows from (2.1.3) by counting dimensions of totally isotropic subspaces.
(ii) =⇒ (vi). This follows from 4.2 by counting dimensions of totally isotropic subspaces.
(vii) =⇒ (iii). Dito.
(i) ⇐⇒ (viii). This follows from π3(J) ∼= π3(Jred).
(viii) =⇒ (ix). Every reducing field E of J satisfies J ⊗E ∼= Jred ⊗E (by 1.17) and this is split.
(ix) =⇒ (viii). There exists a field extension of degree 1 or 3 which splits J , hence Jred. By
Springer’s Theorem, Jred must have been split to begin with.
(x) =⇒ (ix). This is [PR1, Corollary 4.2].
(ix) =⇒ (x). We may assume that J is a division algebra. By [PR1, Theorem 4.8] all isotopes
of J are isomorphic, so J can be obtained by the unital Tits Process [PR7, 4.2]: There exist a
central simple associative algebra (B, τ) of degree 3 with involution of the second kind as well
as an element b ∈ K = Cent(B) satisfying NK(b) = 1 and J ∼= J(B, τ, 1, b). By 4.1, and since
(i) holds, τ is distinguished. Hence 3.1 yields a separable cubic subfield E ⊂ H(B, τ) satisfying
δ(E/k) = δ(K/k), and 4.9 yields an element b′ ∈ K having norm 1 such that the unital étale Tits
process J ′ = J(E, K, 1, b′) becomes a subalgebra of J . But by 1.14, J ′ has the form D+ for some
central associative division algebra D of degree 3 over k, forcing J to be a first Tits construction.

¤
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4.11 Remark. a) Assume char k 6= 2. Arguing as in 4.5, we see that (i) - (x) of 4.9 are equivalent
to

(xi) ind(T ) ≥ 12,

thus recovering most of [KMRT, (40.5)].
b) Assume char k = 2. Then (2.1.2), (2.1.3) show that, if (i) - (x) of 4.9 hold, S0

J has maximal
Witt index if and only if k contains the cube roots of 1. Thus 4.9 generalizes [PR1, Theorem 4.7]
(see [KMRT, (40.6)]).

5. A Skolem-Noether theorem for Albert algebras.

5.0 We now proceed to derive a Skolem-Noether type theorem, due to Parimala-Sridharan-
Thakur [PaST] over base fields of characteristic not 2 or 3, in full generality. To this end, we
fix a central simple associative k-algebra (B, τ) of degree 3 with involution of the second kind and
write K = Cent(B) for the centre of B.

Besides the invariants mod 2 of an Albert algebra J , its invariant mod 3, denoted by g3(J), also
plays a central role in our subsequent investigation. We refer to [KMRT, p. 537] for the definition
of this invariant and to Rost [Ro] for an existence proof (provided char k 6= 2, 3). An elementary
approach valid in all characteristics has been described by Petersson-Racine [PR8], [PR9]. In
particular, we always know that J is a division algebra if and only if g3(J) 6= 0. Hence a standard
argument, reproduced in [PR5, p. 204] or [KMRT, proof of (40.10)], for example, leads to the
following general conclusion.

5.1 Proposition. Let A be a central simple associative algebra of degree 3 over k. Then, given
α, α′ ∈ k×, the following statements are equivalent.

(i) J(A,α′) and J(A,α) are isomorphic.

(ii) g3(J(A,α′)) = g3(J(A,α)).

(iii) There exists w ∈ A× satisfying α′ = NA(w)α.

(iv) The identity of A extends to an isomorphism from J(A,α′) onto J(A, α). ¤

Actually, the aforementioned theorem of Parimala-Sridharan-Thakur (which we shall now represent
in full generality) specializes to 5.1 if K is split, forcing (B, τ) to have the form (A × Aop, ε) for
some central simple associative algebra A of degree 3, ε being the exchange involution.

5.2 Theorem. Notations being as in 5.0, let u, u′ ∈ H(B, τ), b, b′ ∈ K be invertible elements
satisfying NB(u) = NK(b), NB(u′) = NK(b′). Then, setting J = J(B, τ, u, b), J ′ = J(B, τ, u′, b′),
the following statements are equivalent.

(i) J ′ and J are isomorphic.

(ii) J ′ and J are isotopic.
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(iii) π3(J ′) ∼= π3(J) and g3(J ′) = g3(J).

(iv) There exists w ∈ B× satisfying u′ = wuτ(w), b′ = NB(w)b.

(v) The identity of H(B, τ) extends to an isomorphism from J ′ onto J .

5.3 Proof of 5.2, Part I. The implications (v) ⇒ (i) ⇒ (ii) are obvious. For the implication
(ii) ⇒ (iii) we refer to Thakur [Th, Theorem 2.2], where the restrictions on the characteristic are
actually unnecessary. Finally, since the implication (iv) ⇒ (v) immediately follows from 1.10, it
remains to show that (iii) implies (iv). To do so, we require a preparation, generalizing [KMRT,
(40.13)] to base fields of arbitrary characteristic.

5.4 Lemma. Let w ∈ B× and suppose λ = NB(w) ∈ K× satisfies NK(λ) = 1. Then there exists
an element w′ ∈ B× satisfying λ = NB(w′) and w′τ(w′) = 1.

Proof. We adapt the proof of [PT, 4.5] to the present set-up and first assume that J1 = H(B, τ) is
reduced, having the form H3(K, g) for some diagonal matrix g ∈ GL3(k). This implies B = M3(K),
and w′ = diag(1, 1, λ) ∈ B does the job. We are left with the case that J1 is a division algebra.
Choosing µ ∈ K× such that λ = µτ(µ)−1, we pick θ ∈ K − k satisfying TK(θ) = 1 and κ ∈ K×

satisfying τ(κ) = −κ to define a cubic form F : J1 × k −→ k by

F
(
(x, ξ)

)
:= κ

[
τ(µ)NB(x + ξθ1)− µNB(x + ξ(1− θ)1

)]

for x ∈ J1, ξ ∈ k. Then we distinguish the following cases.

Case 1. K ∼= k × k splits.
Then (B, τ) ∼= (A × Aop, ε) where A is a central simple associative k-algebra of degree 3 and
ε stands for the exchange involution on A × Aop, forcing λ = (α, α−1), α = NA(w1) for some
w1 ∈ A×. Hence w′ := (w1, w

−1
1 ) does the job. We also claim that F is isotropic. To see this,

we write θ = (β, 1 − β), β ∈ k, 2β 6= 1 and may assume µ = (α, 1) as well as w1 6= 1 (otherwise
F

(
(1, 0)

)
= 0). Setting u = (w1 − 1)−1

(
β1 + (β − 1)w1

) ∈ A and x = (u, u) ∈ J1, a routine
computation gives F

(
(x, 1)

)
= 0.

Case 2. K is a field.
We may assume λ 6= 1. Since F , by the discussion of Case 1, becomes isotropic after extending
scalars from k to K, it must have been so all along [SV, 4.2.11]. This yields a nonzero element
(x, ξ) ∈ J1 × k such that

τ(µ)NB(x + ξθ1) = µNB

(
x + ξ(1− θ)1

)
= µNB

(
τ(x + ξθ)

)
.

Hence x + ξθ1 ∈ B×, and w′ = (x + ξθ1)τ(x + ξθ1)−1 satisfies λ = NB(w′) as well as w′τ(w′) = 1,
since the factors of w′ belong to the K-algebra generated by x and hence commute. This completes
the proof. ¤
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5.5 Proof of 5.2, Part II. We can now settle the sole remaining implication (iii) ⇒ (iv) of
5.2. If K ∼= k × k splits, J and J ′ are first Tits constructions, so 5.1 combines with 1.12 to give
(iv). Hence we may assume that K is a field. Changing scalars from k to K transforms J and J ′

into the first Tits constructions J(B, b), J(B, b′), respectively, having the same invariant mod 3.
This implies b′ = NB(w1)b for some w1 ∈ B× (5.1), allowing us to assume b = b′ (1.10). On the
other hand, we conclude from 4.1 that π3(J), π3(J ′) are the Pfister forms of the involutions τ (u) =
Int(u) ◦ τ, τ (u′) = Int(u′) ◦ τ , respectively, on B. Since π3(J) ∼= π3(J ′) by (iii), we may apply 2.4 to
find an invertible element v ∈ B satisfying τ (u′) = Int(v)◦τ (u)◦Int(v)−1. This implies u′ = αvuτ(v)
for some α ∈ k×. Using the relations NB(u) = NK(b) = NB(u′), we deduce α3NB(v)τ

(
NB(v)

)
= 1,

so v1 = α2NB(v)v ∈ B× satisfies v1uτ(v1) = u′. Performing the same computations again, with
v1, 1 in place of v, α, respectively, we see that λ = NB(v1) satisfies λτ(λ) = 1. Applying 5.4 to λ−1

and τ (u′) yields an element v2 ∈ B× such that NB(v2) = λ−1, v2τ
(u′)(v2) = 1. The latter amounts

to u′ = v2u
′τ(v2), so w = v2v1 satisfies all requirements of (iv) in 5.2. ¤

5.6 Remark. a) In the spirit of [Th, Theorem 2.1] and its proof, 5.2 generalizes easily to the
situation where two distinct involutions of the second kind (rather than τ alone) are allowed on B;
no restrictions on the characteristic have to be imposed.
b) Just as in [KMRT, (40.15)] or [PaST, Section 3] one may use 5.1, 5.2 to establish the classical
Skolem-Noether theorem for 9-dimensional separable subalgebras of Albert algebras in arbitrary
characteristic.

6. The Tits process and Pfister forms

6.0 As before, we let (B, τ) be a central simple associative algebra of degree 3 over k with
involution of the second kind and write K = Cent(B) for the centre of B. In 3.3 we have described
the Pfister form of J = H(B, τ) explicitly in terms of parameters needed to realize J by means
of the étale Tits process. On the other hand, for char k 6= 2, [KMRT, (19.25)] provides a similar
description in terms of K and an arbitrary cubic étale k-subalgebra of J . It is the purpose of the
present section to compare these two descriptions. In doing so, we will obtain a version of [KMRT,
(19.25)] that is valid in all characteristics. Our approach is based on a number of elementary
computations in the Witt group of k.

6.1 Lemma. Let E be a cubic étale k-algebra and u ∈ E an invertible element. Then

(TE)∗(〈u〉) . N∆(E) = 〈NE(u)〉 . N∆(E)

in the Witt group of k.

Proof. By Springer’s theorem, we may assume E = k × ∆, ∆ = ∆(E). Then u = (α, v) (α ∈
k×, v ∈ ∆×), forcing (TE)∗(〈u〉) = 〈α〉 ⊥ (T∆)∗(〈v〉), hence

(TE)∗(〈u〉) . N∆ = 〈α〉 . N∆ + (T∆)∗(〈v〉) . N∆ = 〈α〉 . N∆

in the Witt group of k since (T∆)∗(〈v〉) . N∆ = (T∆)∗
(〈v〉. (N∆ ⊗ ∆)

)
(by Frobenius reciprocity

(1.6.1)) is hyperbolic. On the other hand, NE(u) = αN∆(v) implies

〈α〉 . N∆ = 〈NE(u)〉〈N∆(v)〉 . N∆ = 〈NE(u)〉 . N∆.
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¤

6.2 Lemma. Notations being as in 6.0, let E ⊂ J be any cubic étale subalgebra and write L for
the quadratic étale k-algebra corresponding to δ(K/k) + δ(E/k) ∈ H1(k,Z/2Z). Then

π(J) ∼= 〈−dK/k〉 . π(J) ∼= 〈−dL/k〉. π(J) ∼= 〈dE/k〉 . π(J).

Proof. Since π(J) is a multiple of NK (by (2.2.3)) and of NL as well (by 3.3), the first two relations
follow from 1.3.4. Now 1.14 implies the rest. ¤

6.3 Lemma. Notations being as in 6.2,

NL = N∆(E) + 〈dE/k〉 . NK

in the Witt group of k.

Proof. The idea is to compute the δ(E/k)-associate of NK⊥ h in two different ways. Using (1.3.1),
(1.3.2), we obtain

(NK ⊥ h)δ(E/k)
∼= (NK)δ(E/K) ⊥ h ∼= NL ⊥ h

on the one hand and

(NK ⊥ h)δ(E/k)
∼= (Nk{0} ⊥ NK)δ(E/k)

∼= N∆(E) ⊥ 〈dE/k〉. NK

on the other. Comparing the two leads to the desired conclusion. ¤

6.4 Normalizing the Tits process. Let K be a quadratic étale k-algebra, B a separable as-
sociative K-algebra of degree 3, τ a K/k-involution of B and u ∈ H(B, τ), b ∈ K invertible
elements satisfying NB(u) = NK(b). Just as in [KMRT, (39.2)] we may modify the Tits process
J(K, B, τ, u, b) by setting w := b−1u, v := wuτ(w), c := bNB(w) to obtain

v = NB(u)−1u3, c = τ(b)b−1

and an isomorphism J(K, B, τ, u, b) ∼−→ J(K, B, τ, v, c) via (x0, x) 7→ (x0, xw) (1.10), where the
new Tits process is normalized in the sense that NB(v) = NK(c) = 1.

6.5 Theorem. (cf. [KMRT, (19.25)]) Notations being as in 6.0, let E ⊂ J be any cubic étale
subalgebra. Realizing J ∼= J(E, L, u, b) as an étale Tits process algebra (cf. 1.14), where L is a
quadratic étale k-algebra and u ∈ E, b ∈ L are invertible elements satisfying NE(u) = NL(b) ∈ k×2

(cf. 6.4), we obtain
π(J) ∼=

(〈1〉 ⊥ 〈dE/k〉(TE)∗(〈u〉)
)
. NK .
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Proof. Since both sides have the same dimension, its suffices to show that they determine the same
element in the Witt group of k. Accordingly, we compute

π(J) = NL + 〈dE/k〉(TE)∗(〈u〉) . NL (by 3.3)

= N∆(E) + 〈dE/k〉 . NK +

〈dE/k〉(TE)∗(〈u〉) . N∆(E) + (TE)∗(〈u〉) . NK (by 6.3)

= N∆(E) + 〈dE/k〉 . NK + 〈dE/k〉 . N∆(E) +

(TE)∗(〈u〉) . NK (by 6.1 and NE(u) ∈ k×2)
= 〈dE/k〉 .

(
NK + 〈dE/k〉(TE)∗(〈u〉) . NK

)
(by (1.3.4)).

Since π(J) ∼= 〈dE/k〉 . π(J) by 6.2, the assertion follows. ¤
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