VALUATIONS ON COMPOSITION ALGEBRAS

Holger P. Petersson
Fachbereich Mathematik und Informatik
FernUniversität
Lützowstraße 125
D-5800 Hagen 1
Bundesrepublik Deutschland

Abstract

Necessary and sufficient conditions for a valuation on a field to extend to a central simple nonassociative algebra of finite dimension are obtained. Applications are given to valuations of composition algebras; in particular, we describe all quaternion algebras over the rationals to which the p-adic valuation, p a prime, may be extended.

Non-archimedian valuations on composition algebras over the field \mathbf{Q} of rational numbers have recently been studied in Balachandran, Rema and Satyanarayanamurthy [1]. It is the purpose of the present note to
propose a different approach to the subject, leading at the same time to more general results and to shorter proofs as well.

1. Let k be a field. All k-algebras are supposed to be nonassociative with unit. By a (multiplicative) valuation on a k-algebra A we mean a map $v, x \mapsto|x|$, from A to the nonnegative reals satisfying the usual conditions

$$
\begin{aligned}
& |x|=0 \Longleftrightarrow x=0 \\
& |x+y| \leq|x|+|y|, \\
& |x y|=|x||y|
\end{aligned}
$$

for all $x, y \in A$. For $A \neq 0$ to admit a valuation it is clearly necessary that it contain no divisors of zero (hence, in the finite-dimensional case, that it be a division algebra). Every valuation of A canonically induces a valuation on k.
2. Conversely, let k be a valued field with completion \hat{k} and suppose A is a central simple k-algebra of finite dimension. We wish to set up a bijection between the valuations of A inducing the given valuation on k and the valuations of $A \otimes_{k} \hat{k}$ inducing the given valuation on \hat{k}. On the one hand, if we start with a valuation w of $A \otimes \hat{k}$ inducing the given valuation on \hat{k}, restriction yields a valuation $w_{\mid A}$ of A inducing the given valuation on k. On the other hand, if we start with a valuation v of A inducing the given valuation on k and denote by $j_{v}: A \rightarrow \hat{A}$ the canonical imbedding into the corresponding completion, the composite $\operatorname{map} k \rightarrow A \rightarrow \hat{A}$ extends to a homomorphism $\hat{k} \rightarrow \hat{A}$, giving \hat{A} the structure of a \hat{k}-algebra. Hence j_{v} extends to a homomorphism $\hat{j}_{v}: A \otimes \hat{k} \rightarrow \hat{A}$, which, by central simplicity, is injective and so may be used to pull back the valuation of \hat{A} to yield a valuation $v \otimes \hat{k}$ of $A \otimes \hat{k}$ inducing the given valuation on \hat{k}.
3. Proposition Let k be a valued field with completion \hat{k} and A a central simple k-algebra of finite dimension. Then the assignments $v \mapsto v \otimes \hat{k}, w \mapsto w_{\mid A}$ defined in 2. yield inverse bijections between the set of valuations of A inducing the given valuation on k and the set of valuations of $A \otimes_{k} \hat{k}$ inducing the given valuation on \hat{k}.
Proof. The relation $(v \otimes \hat{k})_{\mid A}=v$ being straight forward to check,
it remains to prove $w_{\mid A} \otimes \hat{k}=w$. Since A has finite dimension, w is complete, so the natural map $A \rightarrow A \otimes \hat{k}$ extends to a homomorphism φ preserving valuations, as shown in the diagram

($\hat{A}, w_{\mid A}$) being the completion of $\left(A, w_{\mid A}\right)$. Hence $\hat{j}_{w_{\mid A}}$ is an isomorphism with inverse φ, and the assertion follows.
Proposition 3 has the following immediate application, generalizing [1, Lemma 3.1].
4. Corollary Let k be a valued field with completion \hat{k} and C a central composition algebra over k with norm n. Then the valuation of k extends to a valuation of C if and only if $C \otimes_{k} \hat{k}$ is a division algebra ${ }^{1}$. In this case, such an extension is necessarily unique, given by the formula $x \mapsto|n(x)|^{\frac{1}{2}}$, and preserves automorphisms as well as anti-automorphisms of C; in particular, it preserves conjugation. It is respectively archimedean, non-archimedean, discrete if and only if the valuation of k has the corresponding property.

Proof. Proposition 3 allows us to assume, whenever necessary, that k is complete and so is non-archimedean or agrees with \mathbf{R} or \mathbf{C}. In any event, we may either pass to the quadratic Jordan algebra associated with C and invoke the valuation theory developed in [5], particularly Satz 5.1 and the subsequent Bemerkung 2, or use a well known theorem of Springer [7] to conclude the proof.
5. Remark (i) Granting the obvious adjustments of Proposition 3 to

[^0]the Jordan setting, the argument given above carries over directly to finite-dimensional absolutely simple quadratic Jordan algebras, producing a result which is completely analogous to Corollary 4 and contains the corresponding statement for finite-dimensional central simple associative algebras as a special case. We omit the details.
(ii) In [1] only valuations preserving conjugation were considered. According to Corollary 4, this restriction is a vacuous one.
(iii) It is not difficult to obtain a version of Proposition 3 for nonassociative algebras which may not contain a unit: Indeed, given a non-zero k-Algebra A, not necessarily unital, a valuation $x \mapsto|x|$ on A is easily seen to induce a unique valuation $\alpha \mapsto|\alpha|$ on k satisfying $|\alpha x|=|\alpha||x|$ for all $\alpha \in k$ and all $x \in A$. Now 2., 3. carry over verbatim to the more general setting of non-unital algebras, the concept of central simplicity being understood in the sense of Jacobson [3,X $\S 1]$.
(iv) The fact that there exists at most one extension of the valuation of k to a valuation of C is originally due to Eichhorn [2, Satz 10].
(v) The following statement generalizes a result announced in [1].
6. Corollary Let C be an octonion algebra over a number field k. Then a non-real valuation v on k does not extend to a valuation of C.

Proof. Indeed, \hat{k} being either the field of complex numbers or a local field with finite residue field, it is a standard fact that there are no octonion division algebras over \hat{k}. Hence Corollary 4 applies.
7. We now turn to a question that has been discussed in [1] at length: Given a prime number p and a quaternion algebra D over \mathbf{Q}, what does it mean that the p-adic valuation of \mathbf{Q} extends to a valuation of D ? Below we will give a quick answer to this question by using Corollary 4 and the theory of local symbols as developed in Serre [6, Chap. XIV] ${ }^{2}$. Adopting the usual notation, we let (r, s), for non-zero rational numbers r, s, be the rational quaternion algebra with norm

$$
\langle 1,-r,-s, r s\rangle=x^{2}-r y^{2}-s z^{2}+r s w^{2} .
$$

(This seems to agree with the algebra $D(-r,-s)$ in [1].) On the other

[^1]hand, we have the p-adic symbol $(r, s)_{p} \in\{ \pm 1\}[6$, XIV § 2, p. 215, with $n=2$], which is -1 if \mathbf{Q}_{p} does not split the quaternion algebra (r, s) (i.e., by Corollary 4, if the p-adic valuation of \mathbf{Q} extends to a valuation of (r, s)) and 1 otherwise ([6, XIV Proposition 7] and [3, 57:9]). Similar to [1], we may assume, whenever necessary, that
$$
D=(m, n) \quad \text { or } \quad D=(m, p n) \quad \text { or } \quad D=(p m, p n),
$$
where m, n are integers not divisible by p. Moreover, since $(m, p n) \cong$ $(p n, m) \tilde{=}(p n,-p m n)$ and $(p m, p n) \cong\left(p m,-p^{2} m n\right) \cong(-m n, p m)$ by $[3$, 57:10], the second case may always be translated to the third and conversely.
8. Suppose now that p is odd. Writing non-zero integers m, n as
$$
m=p^{\alpha} m^{\prime}, \quad n=p^{\beta} n^{\prime}
$$
with $\alpha, \beta \in \mathbf{Z}$ non-negative and $m^{\prime}, n^{\prime} \in \mathbf{Z}$ not divisible by p, we can express $(m, n)_{p}$ via
$$
(m, n)_{p}=(-1)^{\alpha \beta \frac{p-1}{2}}\left(\frac{n^{\prime}}{p}\right)^{\alpha}\left(\frac{m^{\prime}}{p}\right)^{\beta}
$$
as a product of Legendre symbols [6, Chap. XIV § 4, p. 218]. Combining this with 7., we conclude
9. Corollary [1, Theorems 3.7, 3.11] Let p be an odd prime and m, n integers not divisible by p. Then the p-adic valuation of \mathbf{Q} does not extend to a valuation of the quaternion algebra (m, n). It extends to a valuation of the quaternion algebra $(p m, p n)$ if and only if
$$
\left(\frac{m n}{p}\right)=(-1)^{\frac{p+1}{2}} .
$$
10. We are left with the case $p=2$. Fixing odd integers m, n, we have
$$
(m, n)_{2}=(-1)^{\frac{m-1}{2} \frac{n-1}{2}}
$$
by [loc. cit., p. 219] and conclude
11. Corollary [1, Theorem 3.5] Let m, n be odd integers. Then the

2-adic valuation of \mathbf{Q} extends to a valuation of the quaternion algebra (m, n) if and only if $m \equiv n \equiv 3 \bmod 4$.

Since the 2-adic symbol may be viewed as a symmetric bilinear form on the \mathbf{F}_{2}-vectorspace $\mathbf{Q}_{2}^{\times} / \mathbf{Q}_{2}^{\times 2}\left(\mathbf{Q}_{2}^{\times}=\mathbf{Q}_{2}-\{0\}\right)$, we finally obtain, $m, n \in \mathbf{Z}$ still being odd,

$$
(m, 2 n)_{2}=(m, 2)_{2}(m, n)_{2}=(-1)^{\frac{m^{2}-1}{8}}(-1)^{\frac{m-1}{2} \frac{n-1}{2}}
$$

from [loc. cit.], whence the 2-adic valuation of \mathbf{Q} extends to valuation $(m, 2 n)$ if and only if either $m \equiv 3,5 \bmod 8$ or $m \equiv n \equiv 3 \bmod 4$ (but not both). We thus end up with the following result.
12. Corollary Let m, n be odd integers. Then the 2 -adic valuation of Q extends to a valuation of the quaternion algebra $(m, 2 n)$ if and only if one of the following conditions is fulfilled.
(i) $m \equiv 3 \bmod 8$ and $n \equiv 1 \bmod 4$.
(ii) $m \equiv 5 \bmod 8$.
(iii) $m \equiv 7 \bmod 8$ and $n \equiv 3 \bmod 4$.

Since $(2 m, 2 n) \cong(2 m,-4 m n) \cong(-m n, 2 m)$ by $[3,57: 10]$, Corollary 12 agrees with the theorem stated without proof in [1, p. 118].

References

[1] V. K. Balachandran, P. S. Rema and P. V. Satyanarayanamurthy. Nonarchimedean valuations on rational composition algebras. J. Math. Phys. Sci. 22 (1988), 101-130.
[2] W. Eichhorn. Über die multiplikativen Abbildungen endlichdimensionaler Algebren in kommutative Halbgruppen. J. Reine Angew. Math. 231 (1968), 10-46.
[3] N. Jacobson. "Lie algebras" Interscience Publishers, New York-London-Sydney,1962.
[4] O. T. O’Meara. "Introduction to quadratic forms ". SpringerVerlag, Berlin-Heidelberg-New York, 1963.
[5] H. P. Petersson. Jordan-Divisionsalgebren und Bewertungen. Math. Ann. 202 (1973), 215-243.
[6] J. P. Serre. "Corps locaux". Hermann, Paris, 1968.
[7] T. A. Springer. Quadratic forms over fields with a discrete valuation. Indag. Math. 17 (1955), 352-362.

[^0]: ${ }^{1}$ The author is indebted to W. Scharlau, who suggested this simple but important result during a bycicle ride to the mathematics department of the University of Münster in the fall of 1971.

[^1]: ${ }^{2}$ The author, who originally had proceded in a slightly different manner, is indebted to W. Scharlau and M. Schulte for having drawn his attention to this.

