Forschungsprojekt

AI.EDU Research Lab 2.0

Projektleitung:
Prof. Dr. Claudia de Witt
Prof. Dr. Niels Pinkwart (DFKI)
Mitarbeitende:
Silke Wrede
Lars van Rijn
Dr. Xia Wang (DFKI)
Dr. rer. nat. Nghia Trung Duong
Status:
laufend
Laufzeit:
01. Oktober 2022 bis 30. September 2025
fördernde Einrichtungen:
Aus Mitteln des Forschungszentrums CATALPA - Center of Advanced Technolgy Assisted Learning and Predictive Analytics der FernUniversität in Hagen finanziertes interdisziplinäres Projekt

Projektseite

Projektziele und Forschungsfragen

Das AI.EDU Research Lab erforscht erneut den Einsatz von KI in der Hochschullehre. In der Version 2.0 steht die Unterstützung von Kompetenzen Studierender, insbesondere bei der Herleitung eines Hausarbeitsthemas und einer damit verbundenen leitenden Fragestellung mit Recommendersystemen (RecSys) sowie mit generativen KI-Tools im Mittelpunkt der Forschung. Dafür stützt sich das Projekt auf die Ergebnisse und Erfahrungen der ersten Forschungsförderung.

RecSys, basierend auf unterschiedlichen Recommenderverfahren, werden als eine kontextgebundene Kombination von KI-Technologien und didaktischem Design zum Zweck der Übermittlung von Empfehlungen an Bildungsakteure eingesetzt. Sie dienen im Projekt der Erforschung und Evaluation geeigneter KI-Verfahren zur studentischen Unterstützung bei deren Themenfindung und Generierung einer leitenden Fragestellung für ihre Hausarbeit. Ein zentrales Forschungsthema ist dabei u.a. die Transparenz und Vertrauenswürdigkeit von selbst entwickelten und bereits im Einsatz befindlichen KI-Systemen. Vergleichend werden aktuelle Tools und Aufgabenstellungen für innovative Einsatzmöglichkeiten mit generativer KI erforscht.

Das „AI.EDU Research Lab“ wird aus Mitteln des Forschungszentrum „CATALPA - Center of Advanced Technolgy Assisted Learning and Predictive Analytics“ der FernUniversität in Hagen finanziert.

AI.EDU Research Lab 10/2018 – 09/2022

mehr Infos

AI.EDU war ein CATALPA-Projekt.

Künstliche Intelligenz, die Lernende und Lehrende bei der Bearbeitung und Strukturierung von Studieninhalten unterstützt – AI.EDU hat erforscht, wie genau das gelingen kann. Damit Lernende überhaupt erst durch KI unterstützt werden können, ihre Fähigkeiten zu verbessern, mussten Lehr- und Lernprozesse erst einmal entschlüsselt und beschrieben werden. Das Projekt verlief in drei Phasen von der Forschung bis hin zur Implementierung und Skalierung.


Projektziele und Forschungsfragen

Künstliche Intelligenz in der Hochschulbildung ist zwar ein bisher noch relativ wenig erforschtes Gebiet, weckt gleichzeitig aber große Erwartungen an eine verbesserte Qualität des Lehrens und Lernens. In dem Kooperationsprojekt erforscht das Lehrgebiet Bildungstheorie und Medienpädagogik von Prof. Dr. Claudia de Witt gemeinsam mit dem Educational Technology Lab unter Leitung von Prof. Dr. Niels Pinkwart des Deutschen Forschungszentrums für Künstliche Intelligenz (DFKI, Nachfolge von Prof. Dr. Christoph Igel) Methoden und Anwendungen der Künstlichen Intelligenz in Studium, Lehre und Weiterbildung der FeU. Es werden sowohl Szenarien, welche bei der Bearbeitung und Strukturierung von Studieninhalten unterstützen, als auch Anwendungen zur Begleitung des gesamten Studienverlaufs entwickelt und zunächst in Testbeds erprobt. Im Fokus der Umsetzung liegen wissensbasierte Expertensysteme, Education Data Mining und Verfahren des Maschinellen Lernens. Eines der wesentlichen Ziele in dem dreijährigen Vorhaben ist es, dass diese Methoden Lernende sowohl bei der Ausbildung ihrer metakognitiven Fähigkeiten als auch bei der inhaltlichen Bearbeitung über Empfehlungssysteme unterstützen. Dafür werden Lehr- und Lernprozesse entsprechend entschlüsselt und nachvollziehbar beschrieben.

Der Projektverlauf gliedert sich in drei Phasen. In der ersten Projektphase, der Forschung, geht es um die Erarbeitung der Konzepte und die Entwicklung von Demonstratoren. In der Implementierung, welche die zweite Phase bildet, finden die Testungen und die Validierung der Konzepte sowie deren Umsetzungen statt. Schließlich werden in der dritten Phase, der Skalierung, erfolgreiche Lösungsansätze in die Breite getragen und auf weitere Anwendungsszenarien übertragen. Letztlich wird es aber auch darum gehen, Implikationen für Bildung, für die Urteilsfähigkeit und Verantwortung zukünftiger Generationen bei der Gestaltung algorithmisierter Lehr- und Lernprozesse mitzudenken.

Projektleitung

FeU: Prof. Dr. Claudia de Witt (Lehrgebiet Bildungstheorie und Medienpädagogik) und
DFKI: Prof. Dr. Niels Pinkwart (DFKI, HU und Visiting Professor bei CATALPA) - s. auch Kooperationen.

Team

Projektlaufzeit

Oktober 2018 bis September 2022

Ausgewählte Veröffentlichungen

Gloerfeld, C.; Wrede, S.; de Witt, C. & Wang, X. (2020). Recommender – Potentials and Limitations for Self-Study in Higher Education from an Educational Science Perspective. International Journal of Learning Analytics and Artificial Intelligence for Education (iJAI), 2(2), 34-45. DOI: 10.3991/ijai.v2i2.14763. URL: https://online-journals.org/index.php/i-jai/article/download/14763/7925

Wang, X., Gülenman, T., Pinkwart, N., de Witt, C. Gloerfeld, C. & Wrede, S. (2020). Automatic Assessment of Student Homework and Personalized Recommendation. ICALT 2020. DOI: 10.1109/ICALT49669.2020.00051. URL: https://ieeexplore.ieee.org/document/9155651

Einblick in das AI.EDU Research Projekt

Vorschaubild AI.EDU FilmFoto: FernUniversität
Video: FernUniversität

Für einen Einblick in das AI.EDU Research Projekt freuen wir uns, Ihnen dieses Video präsentieren zu können.